已知fn(x)=(1+x)n
(1)若數(shù)學(xué)公式,求a1+a3+…+a2009+a2011的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù).

解:(1)∵fn(x)=(1+x)n,
∴f2011(x)=(1+x)2011
又f2011(x)=a0+a1x+…+a2011x2011,
∴f2011(1)=a0+a1+…+a2011=22011,①
f2011(-1)=a0-a1+…+a2010-a2011=0,②
①-②得:2(a1+a3+…+a2009+a2011)=22011
∴a1+a3+…+a2009+a2011=22010
(2)∵g(x)=f6(x)+2f7(x)+3f8(x),
∴g(x)=(1+x)6+2(1+x)7+3(1+x)8
∴g(x)中含x6項(xiàng)的系數(shù)為1+2×+3=99.
分析:(1)依題意可求得f2011(1)=a0+a1+…+a2011=22011①與f2011(-1)=a0-a1+…+a2010-a2011=0②,①-②可得a1+a3+…+a2009+a2011的值;
(2)依題意可得g(x)=(1+x)6+2(1+x)7+3(1+x)8,由二項(xiàng)式系數(shù)的性質(zhì)可得g(x)中含x6項(xiàng)的系數(shù).
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,突出考查賦值法與解方程組的方法,考查理解與分析運(yùn)算的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知fn(x)=(1+x)n,
(Ⅰ)若f2011(x)=a0+a1x+…+a2011x2011,求a1+a3+…+a2009+a2011的值;
(Ⅱ)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù);
(Ⅲ)證明:
C
m
m
+2
C
m
m+1
+3
C
m
m+2
+…+n
C
m
m+n-1
=[
(m+1)n+1
m+2
]
C
m+1
m+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知fn(x)=(1+x)n
(1)若f11(x)=a0+a1x+a2x2+…+a11x11,求a1+a3+…+a11的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù);
(3)證明:
C
m
m
+2
C
m
m+1
+3
C
m
m+2
+…+n
C
m
m+n-1
=[
(m+1)n+1
m+2
]
C
m+1
m+n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知fn(x)=(1+x)+2(1+x)2+…+n(1+x)n=an0+an1x+…+annxn,n∈N*,這些系數(shù)可形成如下數(shù)陣:
(1)求出a31,a32的值;
(2)若n=9,求a91+a95+a97+a99的值;
(3)求數(shù)列{aij}(其中i,j∈N*,且1≤j≤i≤n)的和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知fn(x)=(1+x)n
(1)若f2011(x)=a0+a1x+…+a2011x2011,求a1+a3+…+a2009+a2011的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案