曲線上在橫坐標(biāo)為的點(diǎn)處的切線方程是______________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-2,0),B(2,0),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為-
3
4

(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓(x-1)2+y2=r20<r<
3
2
)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省營口市高一上學(xué)期期末檢測數(shù)學(xué)試卷 題型:解答題

.(本小題滿分12分)

已知點(diǎn),一動圓過點(diǎn)且與圓內(nèi)切,

(1)求動圓圓心的軌跡的方程;

(2)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值

(3)在的條件下,設(shè)△的面積為(是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高二期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿分15分)已知點(diǎn),一動圓過點(diǎn)且與圓內(nèi)切.

(Ⅰ)求動圓圓心的軌跡的方程;

(Ⅱ)設(shè)點(diǎn),點(diǎn)為曲線上任一點(diǎn),求點(diǎn)到點(diǎn)距離的最大值;

(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn)),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(理)下學(xué)期期末監(jiān)測 題型:解答題

(本小題滿分14分)

設(shè)動圓過點(diǎn),且與定圓內(nèi)切,動圓圓心的軌跡記為曲線,點(diǎn)的坐標(biāo)為

(1)求曲線的方程;

(2)若點(diǎn)為曲線上任意一點(diǎn),求點(diǎn)和點(diǎn)的距離的最大值;

(3)當(dāng)時,在(2)的條件下,設(shè)是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn),記△的面積為,以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值?若存在,求出此最小值;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案