設(shè)x,y滿足約束條件
x+y≥1
x-2y≥-2
3x-2y≤3
x+2
x+y+3
≥a
恒成立,則實(shí)數(shù)a的最大值為
 
考點(diǎn):簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:令x+2=n,x+y+3=m,分別把約束條件及
x+2
x+y+3
≥a
轉(zhuǎn)化,然后作出可行域,利用
n
m
的幾何意義求得斜率最小值得答案.
解答: 解:令x+2=n,x+y+3=m,
則x=n-2,y=m-n-1,代入
x+y≥1
x-2y≥-2
3x-2y≤3
,得
m≥4
2m-3n≤1
2m-5n+7≥0

畫出可行域如圖,

n
m
的幾何意義為可行域內(nèi)的動(dòng)點(diǎn)與原點(diǎn)(0,0)連線的斜率,
由圖可知,當(dāng)動(dòng)點(diǎn)為A(4,
7
3
)時(shí),(
n
m
)min=
7
3
4
=
7
12

∴滿足
x+2
x+y+3
≥a
恒成立的a的最大值為
7
12

故答案為:
7
12
點(diǎn)評(píng):本題考查了簡單的線性規(guī)劃,考查了數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,c>d>0,則一定有( 。
A、
a
c
b
d
B、
a
c
b
d
C、
a
d
b
c
D、
a
d
b
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=2,b=1,cosA=
1
3
,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)的最小正周期為4,且在[2,3]上是增函數(shù),有下列命題:
①f(2014)=0;②f(2015)>0;③f(
2x2+4x+5
x2+2x+2
)>0;④f(
2015
2014
)<f(
5
2
).
正確命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時(shí)間(單位:分鐘)進(jìn)行了統(tǒng)計(jì),如下表.若視頻率為概率,請(qǐng)用有關(guān)知識(shí)解決下列問題.
病癥及代號(hào)普通病癥A1復(fù)診病癥A2常見病癥A3疑難病癥A4特殊病癥A5
人數(shù)100300200300100
每人就診時(shí)間(單位:分鐘)34567
(1)用ξ表示某病人診斷所需時(shí)間,求ξ的數(shù)學(xué)期望.并以此估計(jì)專家一上午(按3小時(shí)計(jì)算)可診斷多少病人;
(2)某病人按序號(hào)排在第三號(hào)就診,設(shè)他等待的時(shí)間為ξ,求P(ξ≤8);
(3)求專家診斷完三個(gè)病人恰好用了一刻鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是A′A,C′C的中點(diǎn),則下列判斷中正確的是
 

①四邊形BFD′E在底面ABCD內(nèi)的投影是正方形;
②四邊形EBFD′在底面A′D′DA內(nèi)的投影是菱形;
③四邊形EBFD′在面A′D′DA內(nèi)的投影與在面ABB′A′內(nèi)的投影是全等的平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα,tanβ是方程x2-8x+3=0的兩根,且α,β為銳角 則cos(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α和角β的終邊關(guān)于x軸對(duì)稱,則角α可以用角β表示為(  )
A、K•360°+β(k∈Z)
B、K•360°-β(k∈Z)
C、K•180°+β(k∈Z)
D、K•180°-β(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|y=2x,0<x<1},集合N={x|y=ln(4-x)+
1
x-3
}.
(1)求∁RN,M∩∁RN;
(2)設(shè)A={x|a<x<a+2},若A∪∁RN=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案