橢圓16x2+9y2=144長軸長是( 。
A、4B、3C、8D、6
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:橢圓16x2+9y2=144即為橢圓
x2
9
+
y2
16
=1,即有a=4,2a=8.
解答: 解:橢圓16x2+9y2=144即為
橢圓
x2
9
+
y2
16
=1,
則a=4,b=3,
即有2a=8.
故選C.
點(diǎn)評:本題考查橢圓的方程和性質(zhì),注意首先化為橢圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

證明:2(1-sinα)(1+cosα)=(1-sinα+cosα)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正三棱柱ABC-A1B1C1的底面邊長為2,側(cè)棱長為2
3
,則此三棱柱外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
e-x-2(x≤0)
2ax-1(x>0)
(a是常數(shù)且a>0).給出下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③函數(shù)f(x)在(-∞,0)的零點(diǎn)是(ln
1
2
,0);
④若f(x)>0,在[
1
2
,+∞)上恒成立,則a的取值范圍是(1,+∞);
⑤對任意的x1,x2<0且x1≠x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為橢圓
x2
25
+
y2
9
=1的兩焦點(diǎn),過F1的直線交橢圓于A、B兩點(diǎn),若|F2A|+|F2B|=14,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=2,且a2,a4,a8成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng);
(Ⅱ)設(shè)數(shù)列{bn-an}是等比數(shù)列,且b2=7,b5=91,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)為(0,-1),點(diǎn)(an,an+1)在函數(shù)x-y+2=0的圖象上
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,求
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于實(shí)數(shù)x的不等式|x+1|+|x-2|>a2-2a恒成立,則實(shí)數(shù)a的取值范圍是(  )
A、(-1,3)
B、[-1,3]
C、(-∞,-1)∪(3,+∞)
D、(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+alnx(a不是0)
(Ⅰ)若a=1,求函數(shù)f(x)的極值和單調(diào)區(qū)間;
(Ⅱ) 若在區(qū)間[1,e]上至少存在一點(diǎn)x0,使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案