經(jīng)過(guò)點(diǎn)且與直線(xiàn)相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱(chēng),過(guò)線(xiàn)段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線(xiàn),使直線(xiàn)與軌跡在點(diǎn)處的切線(xiàn)平行,設(shè)直線(xiàn)與軌跡交于點(diǎn)
(1)求軌跡的方程;
(2)證明:
(3)若點(diǎn)到直線(xiàn)的距離等于,且△的面積為20,求直線(xiàn)的方程.

(1);(2)詳見(jiàn)解析;(3).

解析試題分析:(1)方法1是利用直接法,設(shè)動(dòng)點(diǎn)坐標(biāo)為,根據(jù)題中條件列式并化簡(jiǎn)進(jìn)而求出動(dòng)點(diǎn)的軌跡方程;方法2是將問(wèn)題轉(zhuǎn)化為圓心到定點(diǎn)的距離等于點(diǎn)到定直線(xiàn)的距離,利用拋物線(xiàn)的定義寫(xiě)出軌跡的方程;(2)由于軸,利用直線(xiàn)與直線(xiàn)的斜率互為相反數(shù)證明;(3)方法1是先將的方程與拋物線(xiàn)的方程聯(lián)立求出點(diǎn)的坐標(biāo),并根據(jù)一些幾何性質(zhì)求出、,并將的面積用點(diǎn)的坐標(biāo)表示以便于求出點(diǎn)的坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)求出直線(xiàn)的方程;方法2是利用(2)中的條件與結(jié)論,利用直線(xiàn)確定點(diǎn)和點(diǎn)坐標(biāo)之間的關(guān)系,借助弦長(zhǎng)公式求出、,并將的面積用點(diǎn)的坐標(biāo)表示以便于求出點(diǎn)的坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)求出直線(xiàn)的方程.
試題解析:(1)方法1:設(shè)動(dòng)圓圓心為,依題意得,.        1分
整理,得.所以軌跡的方程為.                   2分
方法2:設(shè)動(dòng)圓圓心為,依題意得點(diǎn)到定點(diǎn)的距離和點(diǎn)到定直線(xiàn)的距離相等,
根據(jù)拋物線(xiàn)的定義可知,動(dòng)點(diǎn)的軌跡是拋物線(xiàn).                    1分
且其中定點(diǎn)為焦點(diǎn),定直線(xiàn)為準(zhǔn)線(xiàn).
所以動(dòng)圓圓心的軌跡的方程為.    2分

(2)由(1)得,即,則
設(shè)點(diǎn),由導(dǎo)數(shù)的幾何意義知,直線(xiàn)的斜率為
.          3分
由題意知點(diǎn).設(shè)點(diǎn),
,
.                  4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a8/0/2naat.png" style="vertical-align:middle;" />,.           5分
由于,即.         6分
所以.                               7分
(3)方法1:由點(diǎn)的距離等于,可知

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線(xiàn)為,離心率為.若直線(xiàn)與橢圓交于不同的兩點(diǎn)、,以線(xiàn)段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線(xiàn)截得的線(xiàn)段長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的離心率為,
直線(xiàn):y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長(zhǎng)為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn).設(shè)直線(xiàn)的斜率,在軸上是否存在點(diǎn),使得是以GH為底邊的等腰三角形. 如果存在,求出實(shí)數(shù)的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線(xiàn)的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn)(點(diǎn)與點(diǎn)不重合),
①求的值;
②當(dāng)為等腰直角三角形時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的離心率是其左右焦點(diǎn),點(diǎn)是直線(xiàn)(其中)上一點(diǎn),且直線(xiàn)的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿(mǎn)足,求為坐標(biāo)原點(diǎn))面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)為動(dòng)點(diǎn),分別為橢圓的左右焦點(diǎn).已知△為等腰三角形.(1)求橢圓的離心率;(2)設(shè)直線(xiàn)與橢圓相交于兩點(diǎn),是直線(xiàn)上的點(diǎn),滿(mǎn)足,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

時(shí)秒“嫦娥二號(hào)”探月衛(wèi)星由長(zhǎng)征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約公里、遠(yuǎn)地點(diǎn)高度約萬(wàn)公里的直接奔月橢圓(地球球心為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面公里、近月面公里(月球球心為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以為圓心、距月面公里的圓形軌道Ⅲ繞月飛行,并開(kāi)展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測(cè)。已知地球半徑約為公里,月球半徑約為公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大;
(Ⅱ)以為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線(xiàn)與拋物線(xiàn)相切于點(diǎn))且與軸交于點(diǎn)為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為.

(1)若動(dòng)點(diǎn)滿(mǎn)足|=,求點(diǎn)的軌跡.
(2)若過(guò)點(diǎn)的直線(xiàn)(斜率不等于零)與(1)中的軌跡交于不同的兩點(diǎn),試求面積之比的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案