【題目】基于移動(dòng)互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn).某共享單車運(yùn)營公司的市場研究人員為了解公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代碼

1

2

3

4

5

6

市場占有率

11

13

16

15

20

21

1)請?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖,并用相關(guān)系數(shù)說明可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系;

2)求關(guān)于的線性回歸方程,并預(yù)測該公司20182月份的市場占有率;

3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴(kuò)大市場,現(xiàn)有采購成本分別為1000/輛和800/輛的兩款車型報(bào)廢年限各不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

經(jīng)測算,平均每輛單車每年可以為公司帶來收入500.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù).如果你是該公司的負(fù)責(zé)人,你會(huì)選擇采購哪款車型?

參考數(shù)據(jù): , , .

參考公式:相關(guān)系數(shù);

回歸直線方程為,其中 .

【答案】1見解析2,23%3見解析

【解析】試題分析:(1)根據(jù)表格中的數(shù)據(jù)直接描點(diǎn),可作出散點(diǎn)圖,由表格數(shù)據(jù)算出,從而可得結(jié)果;(2)由,

,∴,從而可得結(jié)果;(3)用頻率估計(jì)概率,利用古典概型概率公式可得到款單車的利潤的分布列,從而可求得款單車的利潤的數(shù)學(xué)期望,利用古典概型概率公式可得到款單車的利潤的分布列,從而可求得款單車的利潤的數(shù)學(xué)期望,每輛單車產(chǎn)生利潤的期望值為決策依據(jù)可得結(jié)論.

試題解析:(1)散點(diǎn)圖如圖所示

,

,

所以兩變量之間具有較強(qiáng)的線性相關(guān)關(guān)系,

故可用線性回歸模型擬合兩變量之間的關(guān)系.

2,

,

∴回歸直線方程為.

2018年2月的月份代碼,,

所以估計(jì)2018年2月的市場占有率為23%.

(3)用頻率估計(jì)概率, 款單車的利潤的分布列為

(元).

款單車的利潤的分布列為

(元)

以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),故應(yīng)選擇款車型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,,平面ADE,

求證:

,,且直線BD與平面ABFE所成的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù),其導(dǎo)函數(shù)的大致圖像如圖所示,則下列敘述正確的是().

(1)

2)函數(shù)上遞增,在上遞減

3的極值點(diǎn)為c,e

4的極大值為

A. (1)(2) B. (2)(3) C. (3) D. (1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫出函數(shù) 的增區(qū)間;

(2)寫出函數(shù), 的解析式;

(3)若函數(shù), ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=xln x

1求函數(shù)fx的極值點(diǎn);

2設(shè)函數(shù)gx=fx-ax-1,其中a∈R,求函數(shù)gx在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的奇函數(shù).

(Ⅰ) 的值;

(Ⅱ) 若存在,使不等式有解,求實(shí)數(shù)的取值范圍;

(Ⅲ)已知函數(shù)滿足,且規(guī)定,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題,其中正確的命題的個(gè)數(shù)(

函數(shù)圖象恒在軸的下方;

的圖像經(jīng)過先關(guān)于軸對(duì)稱,再向右平移1個(gè)單位的變化后為的圖像;

若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是

函數(shù)的圖像關(guān)于對(duì)稱的函數(shù)解析式為

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點(diǎn),點(diǎn)M在正方形BCC1B1內(nèi)運(yùn)動(dòng),且直線AM//平面A1DE,則動(dòng)點(diǎn)M 的軌跡長度為( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案