【題目】已知是定義在實數(shù)集上的奇函數(shù),為非正的常數(shù),且當時,.若存在實數(shù),使得的定義域與值域都為,則實數(shù)的取值范圍是()
A. B. C. D.
【答案】B
【解析】
由題意得出函數(shù)在上單調(diào)遞減,結(jié)合題意得出,由題意得出,兩式相加得出,可得出,從而可得出實數(shù)的取值范圍.
函數(shù)為上的奇函數(shù),則,適合.
當且時,函數(shù)為減函數(shù).
設(shè),則,,
此時,,且該函數(shù)在上單調(diào)遞增,
所以,函數(shù)在實數(shù)集上單調(diào)遞減,
由題意可得,則點和點在函數(shù)的圖象上,且這兩點關(guān)于直線對稱.
若,則這兩點均為第二象限,都在直線的上方,不可能關(guān)于直線對稱;
若,則這兩點均為第四象限,都在直線的下方,不可能關(guān)于直線對稱.
因此,.
由,得,兩式相加得,
即,(舍去)或,則.
代入,得,,又,.
因此,實數(shù)的取值范圍是,故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過第四象限,求的取值范圍;
(2)若直線交軸負半軸于,交軸正半軸于,求的面積的最小值并求此時直線的方程;
(3)已知點,若點到直線的距離為,求的最大值并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)研機構(gòu),對本地歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,將生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對應(yīng)的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個年齡段應(yīng)各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在直角梯形中,AB∥CD,AB⊥BC,CD=2AB=2BC=4,過A點作AE⊥CD,垂足為E,現(xiàn)將ΔADE沿AE折疊,使得DE⊥EC.取AD的中點F,連接BF,CF,EF,如圖乙。
(1)求證:BC⊥平面DEC;
(2)求二面角C-BF-E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】荷花池中,有一只青蛙在成“品”字形的三片荷葉上跳來跳去(每次跳躍時,均從一片荷葉跳到另一片荷葉),而且逆時針方向跳的概率是順時針方向跳的概率的兩倍,如圖所示.假設(shè)現(xiàn)在青蛙在荷葉上,則跳三次之后停在荷葉上的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,證明函數(shù)是增函數(shù);
(2)是否存在實數(shù),使得只有唯一的正數(shù),當時恒有:,若這樣的實數(shù)存在,試求、的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環(huán)的概率,先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據(jù)此估計,小張三次射擊恰有兩次命中十環(huán)的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線:(為參數(shù)),曲線:(為參數(shù)).
(1)設(shè)與相交于兩點,求;
(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設(shè)點P是曲線上的一個動點,求它到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com