10.已知函數(shù)f(x)=$\frac{1}{\sqrt{1-x}}$的定義域?yàn)镸,g(x)=lnx的定義域?yàn)镹,則M∩N=( 。
A.{x|x>-1}B.{x|x<1}C.{x|0<x<1}D.

分析 先分別求出函數(shù)的定義域,再進(jìn)行交集運(yùn)算即可.

解答 解:∵M(jìn)={x|1-x>0}={x|x<1},N={x|x>0},
∴M∩N={x|0<x<1}.
故選:C.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用0、1、2、3、4這5個(gè)數(shù)字,組成無重復(fù)數(shù)字的五位數(shù),其中偶數(shù)有( 。
A.36個(gè)B.72個(gè)C.48個(gè)D.60個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a>0,b>0,若直線l1:x+a2y+2=0與直線l2:(a2+1)x-by+3=0互相垂直,則ab的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在平面直角坐標(biāo)系中,將曲線C:y=sin2x上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,所得新的曲線方程為y=3sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線過點(diǎn)(2,$\sqrt{3}$),且一條漸近線方程為y=$\frac{1}{2}$x,則該曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{8}$=1C.$\frac{{x}^{2}}{4}$-y2=1D.y2-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要想得到函數(shù)$y=sin(x-\frac{π}{3})$的圖象,只須將y=sinx的圖象( 。
A.向右平移$\frac{π}{3}$個(gè)單位B.向左平移$\frac{π}{3}$個(gè)單位
C.向右平移$\frac{5π}{6}$個(gè)單位D.向左平移$\frac{5π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某球星在三分球大賽中命中率為$\frac{1}{2}$,假設(shè)三分球大賽中總計(jì)投出8球,投中一球得3分,投丟一球扣一分,則該球星得分的期望與方差分別為( 。
A.16,32B.8,32C.8,8D.32,32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)點(diǎn)P在曲線y=2ex上,點(diǎn)Q在曲線y=lnx-ln2上,則|PQ|的最小值為$\sqrt{2}$(1+ln2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在復(fù)平面內(nèi),若復(fù)數(shù)z=(m2-m-2)+(m2-3m+2)i對(duì)應(yīng)點(diǎn):
(1)在虛軸上;
(2)在第二象限;
(3)在直線y=x上,分別求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案