A. | 0 | B. | 1 | C. | 11 | D. | 12 |
分析 由1220+a=(13-1)20+a 按照二項式定理展開,根據(jù)它 能被13整除,可得1+a能被13整除,結合所給的選項可得a的值.
解答 解:∵a∈Z,且0≤a<13,若1220+a=(13-1)20+a=${C}_{20}^{0}$•1320-${C}_{20}^{1}$•1319+${C}_{20}^{2}$ ${C}_{13}^{2}$•1318+…+(-${C}_{20}^{19}$•13)+${C}_{20}^{20}$+a 能被13整除,
故1+a能被13整除,結合所給的選項可得 a=12,
故選:D.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ac≥b | B. | ab≥c | C. | bc≥a | D. | ab≤c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一或第二或第三象限 | B. | 第二或第三或第四象限 | ||
C. | 第二象限或第三象限 | D. | 第三象限或第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈(0,π),使sinx=tanx | |
B. | “對任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1<0” | |
C. | ?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù) | |
D. | △ABC中,“sinA+sinB=cosA+cosB”是“C=$\frac{π}{2}$”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 是三個向量的數(shù)量積 | B. | 是與$\overrightarrow{a}$共線的向量 | ||
C. | 是與$\overrightarrow{c}$共線的向量 | D. | 無意義 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com