(2010•上虞市二模)已知雙曲線的左、右焦點(diǎn)分別為F1,F(xiàn)2,若在雙曲線的右支上存在一點(diǎn)P,使得|PF1|=2|PF2|,則雙曲線的離心率( 。
分析:設(shè)P點(diǎn)的橫坐標(biāo)為x,根據(jù)|PF1|=2|PF2|,得到P在雙曲線右支確定x的范圍,進(jìn)而利用焦半徑求得2ex-2a=ex+a求得x關(guān)于e的表達(dá)式,進(jìn)而根據(jù)x的范圍確定e的范圍.
解答:解:設(shè)P點(diǎn)的橫坐標(biāo)為x
∵|PF1|=2|PF2|所以P在雙曲線右支(x≥a)
由焦半徑公式有.2ex-2a=ex+a
得到ex=3a x=
3a
e

因?yàn)閤≥a,即
3a
e
≥a
∴e的范圍為(1,3]
故選A
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了雙曲線的第二定義的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上虞市二模)過(guò)拋物線y2=8x的焦點(diǎn)的弦AB以(4,a)為中點(diǎn),則|AB|=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上虞市二模)已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn),BC過(guò)橢圓中心O,如圖,且
AC
BC
=0
,|BC|=2|AC|.
(1)求橢圓的方程;
(2)如果橢圓上兩點(diǎn)P、Q使∠PCQ的平分線垂直AO,則總存在實(shí)數(shù)λ,使
PQ
AB
,請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上虞市二模)箱中裝有10張大。亓恳粯拥目ㄆ繌埧ㄆ娣謩e標(biāo)有1到10中的一個(gè)號(hào)碼,正面號(hào)碼為n的卡片反面標(biāo)的數(shù)字是
n2-9n+222
.(卡片正反面用顏色區(qū)分).
(1)如果任意取出一張卡片,試求正面數(shù)字不大于反面數(shù)字的概率.
(2)如果同時(shí)取出兩張卡片,記ξ為兩張卡片中出現(xiàn)的四個(gè)數(shù)字中偶數(shù)的個(gè)數(shù),求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上虞市二模)執(zhí)行右邊的程序框圖,輸出的結(jié)果是
127
127

查看答案和解析>>

同步練習(xí)冊(cè)答案