科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.
(1) 求證:A、M、B三點的橫坐標(biāo)成等差數(shù)列;
(2) 設(shè)直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知拋物線關(guān)于x軸對稱,它的頂點在坐標(biāo)原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點的距離為3,則OM=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準(zhǔn)線于點C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:
(1) 兩準(zhǔn)線間的距離為,焦距為2 ;
(2) 已知P點在以坐標(biāo)軸為對稱軸的橢圓上,點P 到兩焦點的距離分別為過P點作長軸的垂線恰好過橢圓的一個焦點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為坐標(biāo)原點O,橢圓短半軸長為1,動點M(2,t)(t>0)在直線x= (a為長半軸,c為半焦距)上.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3) 設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點對稱的兩個點,點P為橢圓上任意一點,當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點P位置無關(guān)的定值.試對雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com