【題目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.

【答案】
(1)解:由f(x)=lg(x﹣1)+ 可得,x﹣1>0且2﹣x≥0,

解得1<x≤2,故A={x|1<x≤2};

若a= ,則y=2x+ ,當x≤0時,0<2x≤1, <2x+ ,

故B={y| <y≤ };

所以A∪B={x|1<x≤ }.


(2)解:當x≤0時,0<2x≤1,a<2x+a≤a+1,故B={y|a<y≤a+1},

因為A∩B=,A={x|1<x≤2},所以a≥2或a+1≤1,

即a≥2或a≤0,

所以實數(shù)a的取值范圍為a≥2或a≤0.


【解析】(1)化簡集合A,B,再由并集的含義即可得到;(2)運用指數(shù)函數(shù)的單調性求出集合B,由A∩B=,可得a 的范圍.
【考點精析】通過靈活運用集合的并集運算和集合的交集運算,掌握并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P為線段y=2x,x∈[2,4]上任意一點,點Q為圓C:(x﹣3)2+(y+2)2=1上一動點,則線段|PQ|的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)的圖象關于點(1,0)對稱,且當x∈[1,2]時,f(x)=﹣2x+2,若函數(shù)y=f(x)﹣loga(|x|+1)恰好有8個零點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期為π,求f(x)的單調增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象的一條對稱軸為 ,求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+2x.
(1)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(2)求所有的實數(shù)a,使得對任意x∈[1,2]時,函數(shù)f(x)的圖象恒在函數(shù)g(x)=2x+1圖象的下方;
(3)若存在a∈[﹣4,4],使得關于x的方程f(x)=tf(a)有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若| |=1,| |=m,| + |=2.
(1)若| +2 |=3,求實數(shù)m的值;
(2)若 + 的夾角為 ,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】綜合題
(1)已知函數(shù)f(x)=2x+ (x>0),證明函數(shù)f(x)在(0, )上單調遞減,并寫出函數(shù)f(x)的單調遞增區(qū)間;
(2)記函數(shù)g(x)=a|x|+2ax(a>1) ①若a=4,解關于x的方程g(x)=3;
②若x∈[﹣1,+∞),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若將函數(shù)y=2sin2x的圖象向左平移 個單位長度,則平移后的圖象的對稱軸為(
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知側棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,點D是AB的中點.

(1)求證:AC⊥BC;
(2)求證:AC1∥平面CDB1

查看答案和解析>>

同步練習冊答案