計算:直接寫出答案 (1)|-
2
3
|÷|+
3
2
|
=
 
; (2)(
1
3
-
1
2
)×12=
 
考點:有理數(shù)指數(shù)冪的化簡求值
專題:計算題
分析:(1)首先求絕對值,然后進行分數(shù)的除法運算;
(2)根據(jù)乘法的分配律解答.
解答: 解:(1)|-
2
3
|÷|+
3
2
|
=
2
3
÷
3
2
=
2
3
×
2
3
=
4
9
; (2)(
1
3
-
1
2
)×12=
1
3
×12-
1
2
×12
=4-6=-2.
故答案為:
4
9
,-2.
點評:本題考查了有理數(shù)的混合運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的頂點坐標為A(-1,5)、B(-2,-1)、C(4,3),M是BC邊上的中點.
(1)求AB邊所在的直線方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求以線段AM為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(2x+
π
2
)
的最小正周期和奇偶性分別是( 。
A、
π
2
,奇函數(shù)
B、π,偶函數(shù)
C、2π,奇函數(shù)
D、4π2,奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩船到港時間都是早上7時到8時之間,港口只有一個泊位,并規(guī)定每船停泊時間為一刻鐘.兩船到港后不需等候就能直接停泊的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的方程x2+ax+a=0有實數(shù)解;命題q:-1<a≤2.
(1)若¬p是真命題,求實數(shù)a的取值范圍;
(2)若(¬p)∧q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2-x)(x+4)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(2cosx,1),
n
=(cosx,2
3
sinxcosx-1)
,函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若f(B)=1,b=
7
,sinA=3sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若z1=i-4+i-5+…+i-12,z2=i-4•i-5…•i-12,則z1,z2的大小關系為( 。
A、z1>z2
B、z1=z2
C、z1<z2
D、無法比較大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足|z-1|≤5,求|z-(1+4i)|的最大值和最小值.

查看答案和解析>>

同步練習冊答案