已知中,,一個(gè)圓心為M,半徑為的圓在內(nèi),沿著的邊滾動(dòng)一周回到原位。在滾動(dòng)過程中,圓M至少與的一邊相切,則點(diǎn)M到頂點(diǎn)的最短距離是             ,點(diǎn)M的運(yùn)動(dòng)軌跡的周長是        。
解:因?yàn)槔脠A在直角三角形內(nèi)滾動(dòng)的運(yùn)行軌跡可知,當(dāng)圓m運(yùn)行到點(diǎn)C時(shí),此時(shí)點(diǎn)M到三角形ABC的頂點(diǎn)的距離最短,且為,而點(diǎn)M的運(yùn)行軌跡也就是圓心所經(jīng)過的路徑是一個(gè)與三角形相似的三角形,并且周長為6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面內(nèi)有一長度為2的線段和一動(dòng)點(diǎn),若滿足,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓上的任意一點(diǎn)到它兩個(gè)焦點(diǎn)的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B的坐標(biāo)分別是,直線AM,BM相交于點(diǎn)M,且它們的斜率之和是2,則點(diǎn)M的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了加快經(jīng)濟(jì)的發(fā)展,某省選擇兩城市作為龍頭帶動(dòng)周邊城市的發(fā)展,決定在兩城市的周邊修建城際輕軌,假設(shè)為一個(gè)單位距離,兩城市相距個(gè)單位距離,設(shè)城際輕軌所在的曲線為,使輕軌上的點(diǎn)到兩城市的距離之和為個(gè)單位距離,

(1)建立如圖的直角坐標(biāo)系,求城際輕軌所在曲線的方程;
(2)若要在曲線上建一個(gè)加油站與一個(gè)收費(fèi)站,使三點(diǎn)在一條直線上,并且個(gè)單位距離,求之間的距離有多少個(gè)單位距離?
(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線的左右焦點(diǎn),過F1的直線與左支交于A、B兩點(diǎn),若,則該雙曲線的離心率是為(   )
A.            B.        C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓軸的正半軸相交于點(diǎn),兩點(diǎn)在圓上,在第一象限,在第二象限,的橫坐標(biāo)分別為,則劣弧所對(duì)圓 心角的余弦值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知直線l:y=-1,定點(diǎn)F(0,1),過平面內(nèi)動(dòng)點(diǎn)P作PQ丄l于Q點(diǎn),且
(I )求動(dòng)點(diǎn)P的軌跡E的方程;
(II)過點(diǎn)P作圓的兩條切線,分別交x軸于點(diǎn)B、C,當(dāng)點(diǎn)P的縱坐標(biāo)y0>4時(shí),試用y0表示線段BC的長,并求ΔPBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動(dòng)點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來的倍后得到點(diǎn)Q(x,y),且滿足·=1.
(Ⅰ)求動(dòng)點(diǎn)P所在曲線C的方程;
(Ⅱ)過點(diǎn)B作斜率為-的直線l交曲線C于M、N兩點(diǎn),且++=,試求△MNH的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案