14.我國古代數(shù)學(xué)有非常高的成就,在很多方面都領(lǐng)先于歐洲數(shù)學(xué).下面數(shù)學(xué)名詞中蘊(yùn)含微積分中“極限思想”的是( 。
A.天元術(shù)B.少廣術(shù)C.衰分術(shù)D.割圓術(shù)

分析 分別對(duì)數(shù)學(xué)名詞進(jìn)行理解,即可得出結(jié)論.

解答 解:天元術(shù):一種用數(shù)學(xué)文字符號(hào)列方程的方法.
少廣術(shù):已知面積、體積,反求其一邊長和徑長等,也就是開平方、開立方的方法.
衰分術(shù):比例分配問題,《九章算術(shù)》第三章衰分章提出比例分配法則,稱為衰分術(shù).
所謂“割圓術(shù)“,是用圓內(nèi)接正多邊形的面積去無限逼近圓面積并以此求取圓周率的方法.
故選:D.

點(diǎn)評(píng) 本題考查了我國古代數(shù)學(xué)的成就,考查數(shù)學(xué)名詞,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線x+y=3被曲線x2+y2-2y-3=0截得的弦長為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若($\frac{3}{\sqrt{x}}$-$\root{3}{x}$)n的展開式中所有項(xiàng)系數(shù)的絕對(duì)值之和為1024,則該展開式中的常數(shù)項(xiàng)是-90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a>0,b>0,$\frac{2}{a}+\frac{1}=\frac{1}{4}$,若不等式2a+b≥4m恒成立,則m的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個(gè)單位向量,則$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$夾角為( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.三角形的內(nèi)角是第一象限角或第二象限角
B.第一象限的角是銳角
C.第二象限的角比第一象限的角大
D.角α是第四象限角,則$2kπ-\frac{π}{2}<α<2kπ(k∈z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-alnx+1$在(0,1)內(nèi)有最小值,則a的取值范圍是( 。
A.0≤a<1B.-1<a<1C.0<a<1D.$0<a<\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組B組合計(jì)
男性262450
女性302050
合計(jì)5644100
(Ⅰ)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?
(Ⅱ)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈(zèng)送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);
(Ⅲ)從(Ⅱ)中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,求“這3人中既有A組又有B組”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
$\overrightarrow{OA}•\overrightarrow{OB}=0$0.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若0<x<2,則函數(shù)$f(x)=1+\sqrt{24x-9{x^2}}$的最大值是5.

查看答案和解析>>

同步練習(xí)冊答案