分析 (1)通過討論x的范圍,得到關(guān)于x的不等式組,解出即可;
(2)由題意得,不等式|x-3|+|x+1|-6≥m+1恒成立,故左邊的最小值大于或等于m+1,問題化為求左邊的最小值,利用絕對(duì)值不等式的性質(zhì)可得左邊的最小值.
解答 解:(1)若函數(shù)f(x)≥g(x),
即|x-3|-2≥-|x+1|+4,即|x-3|+|x+1|≥6,
故$\left\{\begin{array}{l}{x≥3}\\{x-3+x+1≥6}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<3}\\{3-x+x+1≥6}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-1}\\{3-x-x-1≥6}\end{array}\right.$,
解得:x≥4或x≤-2;
(2)由題意得,不等式f(x)-g(x)≥m+1恒成立,
即|x-3|+|x+1|-6≥m+1 恒成立.
∵|x-3|+|x+1|-6≥|(x-3)-(x+1)|-6=-2,
∴-2≥m+1,∴m≤-3,
故m的取值范圍 (-∞,-3].
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的性質(zhì)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-\frac{π}{12},0}]$ | B. | $({-\frac{π}{8},-\frac{π}{24}}]$ | C. | $[-\frac{π}{12},\frac{π}{8})$ | D. | $[{0,\frac{π}{12}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y平均增加1.5個(gè)單位 | B. | y平均增加0.5個(gè)單位 | ||
C. | y平均減少1.5個(gè)單位 | D. | y平均減少0.5個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一定為等差數(shù)列 | B. | 一定為等比數(shù)列 | ||
C. | 既是等差數(shù)列,又是等比數(shù)列 | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com