10.在△ABC 中,已知a=2,b=2$\sqrt{3}$,A=30°,則B=( 。
A.60°或120°B.30°或150°C.60°D.30°

分析 由已知結(jié)合正弦定理可得sinB=$\frac{\sqrt{3}}{2}$,結(jié)合范圍B∈(30°,180°),可求B的值.

解答 解:∵a=2,b=2$\sqrt{3}$,A=30°,
∴由正弦定理可得sinB=$\frac{b•sinA}{a}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
又∵B∈(30°,180°),
∴B=60°或120°.
故選:A.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x=m和x=n是函數(shù)f(x)=lnx+$\frac{1}{2}$x2-(a+2)x的兩個極值點,其中m<n,a∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程
(Ⅱ) 求f(m)+f(n)的取值范圍;
(Ⅲ)若a>$\sqrt{e}$+$\frac{1}{\sqrt{e}}$-2,求f(n)-f(m)的最大值(e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè){an}是等差數(shù)列,若a2=3,a9=7,則數(shù)列{an}前10項和為( 。
A.25B.50C.100D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如表:
年齡(單位:歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)510151055
贊成人數(shù)31012721
(Ⅰ)若以“年齡45歲為分界點”.由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān):
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(Ⅱ)若從年齡在,總有g(shù)(x1)<f (x2)成立,其中e=2.71828…是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖是一個樣本的頻率分布直方圖,由圖形中的數(shù)據(jù)可以估計眾數(shù)是12.5,中位數(shù)是13,平均數(shù)13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,-2),C(4,1)
(Ⅰ)若$\overrightarrow{AB}$=$\overrightarrow{CD}$,求D點的坐標(biāo)及|$\overrightarrow{AD}$|;
(Ⅱ)設(shè)向量$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow$=$\overrightarrow{BC}$,若k$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$平行,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$C:{x^2}-\frac{y^2}{b^2}=1({b>0})$的一條漸近線的傾斜角為$\frac{π}{3}$,則雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$cos(α-\frac{π}{3})=\frac{4}{5}$,則$sin(α+\frac{π}{3})+sinα$等于( 。
A.$\frac{{4\sqrt{3}}}{5}$B.$\frac{{3\sqrt{3}}}{5}$C.$-\frac{{3\sqrt{3}}}{5}$D.$-\frac{{4\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.要證明x<$\sqrt{y}$,只要證明不等式M,不等式M不可能是( 。
A.x2<yB.|x|<$\sqrt{y}$C.-x<$\sqrt{y}$D.x<0

查看答案和解析>>

同步練習(xí)冊答案