已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于A,B兩點.
(1)求證:直線l與雙曲線C只有一個公共點;
(2)設直線l與雙曲線C的公共點為M,且
AM
AB
,證明:λ+e2=1;
(3)設P是點F1關于直線l的對稱點,當△PF1F2為等腰三角形時,求e的值.
(1)證明:因為A、B分別是直線l:y=ex+a與x軸、y軸的交點,
所以點A、B的坐標分別是A(-
a2
c
,0)
,B(0,a),
y=ex+a
x2
a2
-
y2
b2
=1
整理得x2+2cx+c2=0,解得
x=-c
y=-
b2
a
M(-c,-
b2
a
)
,
所以直線l與雙曲線C只有一個公共點、…(3分)
(2)因為
AM
AB
,所以(-c+
a2
c
,-
b2
a
)=λ(
a2
c
,a)

所以-
b2
a
=λa
λ=-
b2
a2
=-
c2-a2
a2
=1-e2
,即λ+e2=1…(6分)
(3)(。┮驗橹本AB為F1P的中垂線,而F2不在直線AB上(點A與F2不重合),
所以|F2F1|≠|F2P|;…(7分)
(ⅱ)若|F2F1|=|F1P|,則
1
2
|F1P|=
1
2
|F1F2|
,
所以
|e(-c)+0+a|
1+e2
=c
,整理得3c2=a2,所以e=
3
3
<1
,不符合題意.…(9分)
(ⅲ)若|PF2|=|PF1|,則點P在y軸上,設P(0,yp),則kPF1=
yp
0-(-c)
=-
1
kAB
=-
a
c
,
所以yP=-a,即P(0,-a),
設N是PF1的中點,則N(-
c
2
,-
a
2
)
,代入直線l的方程,得-
a
2
=e(-
c
2
)+a
,
整理得c2=3a2,e2=3,所以e=
3
.…(12分)
綜上,當△PF1F2為等腰三角形時,e=
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
C:的左右焦點為F1,F(xiàn)2,離心率為e,直線l:y=ex+a與x軸、y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,且
AM
=
3
4
AB

(1)計算橢圓的離心率e
(2)若直線l向右平移一個單位后得到l′,l′被橢圓C截得的弦長為
5
4
,則求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
兩漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又設l與l2交于點P,l與C兩交點自上而下依次為A、B;
(1)當l1與l2夾角為
π
3
,雙曲線焦距為4時,求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:
x2
4
+
y2
m
=1(0<m<4)的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關于點M對稱.
(1)若點P的坐標為(4,3),求m的值;
(2)若橢圓C上存在點M,使得OP⊥OM,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

動點P與兩個定點A(-6,0),B(6,0)連線的斜率之積為-
1
3
,P點軌跡為C,
(1)求曲線C的方程;
(2)直線l過M(-2,2)與C交于E,G兩點,且線段EG中點是M,求l方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
4
+
y2
3
=1
,直線l過點M(m,0).
(Ⅰ)若直線l交y軸于點N,當m=-1時,MN中點恰在橢圓C上,求直線l的方程;
(Ⅱ)如圖,若直線l交橢圓C于A,B兩點,當m=-4時,在x軸上是否存在點p,使得△PAB為等邊三角形?若存在,求出點p坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=8x,O為坐標原點,動直線l:y=k(x+2)與拋物線C交于不同兩點A,B
(1)求證:
OA
OB
為常數(shù);
(2)求滿足
OM
=
OA
+
OB
的點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(Ⅱ)設m=2,過點D(0,4)的直線l與曲線C交于M,N兩點,O為坐標原點,若∠OMN為直角,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知△ABC的頂點A(0,-1),B(0,1),直線AC,直線BC的斜率之積等于m(m0),求頂點C的軌跡方程,并判斷軌跡為何種圓錐曲線.
(2)已知圓M的方程為:(x+1)2+y2=(2a)2(a>0,且a1),定點N(1,0),動點P在圓M上運動,線段PN的垂直平分線與直線MP相交于點Q,求點Q軌跡方程.

查看答案和解析>>

同步練習冊答案