分析 (1)由z2=-2i,展開后利用復數(shù)相等的條件求得a值;
(2)利用復數(shù)代數(shù)形式的乘除運算化簡即可求得復平面內(nèi)與$\frac{z}{1+i}$對應的點的坐標.
解答 解:(1)∵z2=(a-i)2=a2-1-2ai,
由題意,a2-1-2ai=-2i,
∴$\left\{{\begin{array}{l}{{a^2}-1=0}\\{-2a=-2}\end{array}}\right.$,解得a=1.
(2)由題意,z=2-i,
∴$\frac{z}{1+i}=\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
∴復數(shù)$\frac{z}{1+i}$在復平面內(nèi)所對應的點坐標為$(\frac{1}{2},-\frac{3}{2})$.
點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)相等的條件,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | e3 | C. | 4 | D. | e4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z) | B. | [kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z) | ||
C. | [kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z) | D. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com