(12分)如圖所示,以AB=4 cm,BC=3 cm的長方形ABCD為底面的長方體被平面斜著截斷的幾何體,EFGH是它的截面.當AE=5 cm,BF=8 cm,CG=12 cm時,試回答下列問題:

 

 

 

(1)求DH的長;

(2)求這個幾何體的體積;

(3)截面四邊形EFGH是什么圖形?證明你的結(jié)論.

 

 

【答案】

解:(1)過EEB1BF,垂足為B1,則BB1AE=5(cm),

所以B1F=8-5=3(cm).

因為平面ABFE∥平面DCGH,EFHG是它們分別與截面的交線,所以EFHG.

 

 

 

HHC1CG,垂足為C1

GC1FB1=3(cm),

DH=12-3=9(cm).   -----------------------------------    4分

(2)作ED1DH,垂足為D1,B1PCG,垂足為P,連結(jié)D1PB1C1,則幾何體被分割成一個長方體ABCDEB1PD1,一個斜三棱柱EFB1HGC1,一個直三棱柱EHD1B1C1P.從而幾何體的體積為

V=3×4×5+×3×4×3+×3×4×4=102(cm3).--------------8分

(3)是菱形.

證明:由(1)知EFHG,同理EHFG.于是EFGH是平行四邊形.

因為EF

=5(cm),

DD1AE=5(cm),ED1AD=3(cm),

HD1=4(cm),

所以EH

=5(cm).

所以EFEH.

EFGH是菱形.  ------------------------------------------12分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年甘肅省河西五市高三第一次聯(lián)合考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;

(2)求PC與平面PAB所成角的余弦值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南玉溪一中高三上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;

(2)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)如圖所示多面體中,⊥平面,為平行四邊形,分別為的中點,,,.

(1)求證:∥平面;

(2)若∠=90°,求證;

(3)若∠=120°,求該多面體的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年山東省青島市高考模擬練習題(一)數(shù)學(理) 題型:解答題

(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面,,, 的中點,

(Ⅰ)求的長;

(Ⅱ)求證:面;

(Ⅲ)求平面與平面相交所成銳角二面角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山市高三第一次月考數(shù)學理卷 題型:解答題

(本小題滿分12分)如圖所示,在正方體中,

E為AB的中點

(1)若的中點,求證: ∥面;

(2) 若的中點,求二面角的余弦值;

 

 

 

查看答案和解析>>

同步練習冊答案