(本小題滿分12分
已知定點(diǎn),B是圓(C為圓心)上的動點(diǎn),AB的垂直平分線與BC交于點(diǎn)E。
(1)求動點(diǎn)E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點(diǎn)是橢圓一點(diǎn),離心率,是橢圓的兩
個(gè)焦點(diǎn).
(1)求橢圓的面積;
(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知分別是橢圓的左、右 焦點(diǎn),已知點(diǎn) 滿足,且。設(shè)是上半橢圓上且滿足的兩點(diǎn)。
(1)求此橢圓的方程;
(2)若,求直線AB的斜率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓 1(m>0,n>0)的一個(gè)焦點(diǎn)與拋物線x2=4y的焦點(diǎn)相同,離心率為:則此橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓:的左右焦點(diǎn)分別為,離心率為,兩焦點(diǎn)與上下頂點(diǎn)形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于A, B兩點(diǎn),四邊形為平行四邊形,為坐標(biāo)原點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的焦點(diǎn)坐標(biāo)是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
設(shè)橢圓,
已知
(Ⅰ) 求橢圓E的方程;
(Ⅱ)已知過點(diǎn)M(1,0)的直線交橢圓EC,D兩點(diǎn),若存在動點(diǎn)N,使得直線NC,NM,ND的斜率依次成等差數(shù)列,試確定點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案