若f(x)=2x2-kx-8在[2,6]上不具有單調(diào)性,則正實數(shù)k的取值范圍是 ________.

[8,24]
分析:求出函數(shù)對稱軸,由函數(shù)在[2,6]上不具有單調(diào)性,可知對稱軸在此區(qū)間里,因而求出答案.
解答:函數(shù)對稱軸為,
由f(x)=2x2-kx-8在[2,6]上不具有單調(diào)性,
因而可知對稱軸在此區(qū)間里,即,
解得8≤k≤24,
故答案為[8,24].
點(diǎn)評:此題主要考查函數(shù)單調(diào)性和對稱軸的求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2-kx-8在[2,6]上不具有單調(diào)性,則正實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2-ax(a∈R).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若f(x)≤2x2,求實數(shù)a的取值范圍;
(III)求證:ln(n+1)>
1
3
+
1
5
+
1
7
+…+
1
2n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2+1,且x∈{-1,0,1},則f(x)的值域是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實系數(shù)二次函數(shù)f(x)=ax2+bx+c對任何-1≤x≤1,都有|f(x)|≤1.
(1)若f(x)=2x2-1,g′(x)=f(x),且g(0)=0,數(shù)列{an}滿足an=g(an-1),問數(shù)列{an}能否構(gòu)成等差數(shù)列,若能,請求出滿足條件的所有等差數(shù)列;若不能,請說明理由;
(2)求|a|+|b|+|c|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2x2-1(-
3
<x<
5
),f(a)=7,則
a的值是( 。
A、1B、-1C、2D、±2

查看答案和解析>>

同步練習(xí)冊答案