(08年上虞市質(zhì)檢一理) 已知函數(shù)(常數(shù)t>0),過(guò)點(diǎn)P(1,0)作曲線y=f(x)的兩條切線PM、PN,切點(diǎn)分別為M、N.

   (I)求函數(shù)的單調(diào)遞增區(qū)間;

   (II)設(shè),試求函數(shù)的表達(dá)式.

解析:(Ⅰ)>0,得x>或x<-;

故函數(shù)f(x)的單調(diào)遞增區(qū)間是(,+∞)和(-∞,)。

(Ⅱ)設(shè)M(x1,y1),N(x2,y2)

PM的方程為

過(guò)P點(diǎn),結(jié)合,可得

同理:

所以,x1,x2是方程的兩個(gè)根。

=|MN|=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一文)已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物

的焦點(diǎn),離心率等于 

(I)求橢圓C的標(biāo)準(zhǔn)方程;

(II)過(guò)橢圓C的右焦點(diǎn)作直線l交橢圓CA、B兩點(diǎn),交y軸于M點(diǎn),若為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一文) (Ⅰ) 請(qǐng)寫出一個(gè)各項(xiàng)均為實(shí)數(shù)且公比的等比數(shù)列, 使得其同時(shí)滿足;             

   (Ⅱ) 在符合(1)條件的數(shù)列中, 能否找到一正偶數(shù), 使得這三個(gè)數(shù)依次成等差數(shù)列? 若能, 求出這個(gè)的值; 若不能, 請(qǐng)說(shuō)明理由.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一理)已知橢圓C1 (0<a<,0<b<2)與橢圓C2有相同的焦點(diǎn). 直線L:y=k(x+1)與兩個(gè)橢圓的四個(gè)交點(diǎn),自上而下順次記為A、B、C、D.

(I)求線段BC的長(zhǎng)(用k和a表示);

(II)是否存在這樣的直線L,使線段AB、BC、CD的長(zhǎng)按此順序構(gòu)成一個(gè)等差數(shù)列.請(qǐng)說(shuō)明詳細(xì)的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一理)  有窮數(shù)列(n=1,2,3,…,n0, n0∈N*, n0≥2),滿足,(n=1,2,3,…,n0-1),求證:

(Ⅰ)數(shù)列的通項(xiàng)公式為:,(n=2,3,…,n0);

(Ⅱ) +…+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年上虞市質(zhì)檢一理) 如圖,邊長(zhǎng)為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點(diǎn),

     (Ⅰ)  證明:AM⊥PM;          

    (Ⅱ)求二面角P―AM―D的大。

    (III)求點(diǎn)D到平面AMP的距離.   

 

查看答案和解析>>

同步練習(xí)冊(cè)答案