【題目】已知復(fù)數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率為( )
A.
B.
C.
D.
【答案】C
【解析】解:復(fù)數(shù)z=x+yi(x,y∈R)滿足 ,它的幾何意義是以(0,0)為圓心,1為半徑的圓以及內(nèi)部部分.y≥x﹣1的圖形是除去圖形中陰影部分,如圖:
復(fù)數(shù)z=x+yi(x,y∈R)滿足 ,則y≥x﹣1的概率: = .
故選:C.
【考點(diǎn)精析】本題主要考查了復(fù)數(shù)的模(絕對(duì)值)和幾何概型的相關(guān)知識(shí)點(diǎn),需要掌握復(fù)平面內(nèi)復(fù)數(shù)所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離,是非負(fù)數(shù),因而兩復(fù)數(shù)的模可以比較大;復(fù)數(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則;幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年巴西奧運(yùn)會(huì)的周邊商品有80%左右為“中國制造”,所有的廠家都是經(jīng)過層層篩選才能獲此殊榮.甲、乙兩廠生產(chǎn)同一產(chǎn)品,為了解甲、乙兩廠的產(chǎn)品質(zhì)量,以確定這一產(chǎn)品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品共98件中分別抽取9件和5件,測(cè)量產(chǎn)品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量:
(2)當(dāng)產(chǎn)品中的微量元素x、y滿足:x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={(x,y)|y=x2+2bx+1},B={(x,y)|y=2a(x+b)},且A∩B是單元素集合,若存在a<0,b<0使點(diǎn)P∈{(x,y)|(x﹣a)2+(y﹣b)2≤1},則點(diǎn)P所在的區(qū)域的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a是常數(shù),對(duì)任意實(shí)數(shù)x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)設(shè)m>n>0,求證:2m+ ≥2n+a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}各項(xiàng)為正數(shù),且a2=4a1 , an+1= +2an(n∈N*)
(I)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)令bn=log3(1+a2n﹣1),數(shù)列{bn}的前n項(xiàng)和為Tn , 求使Tn>345成立時(shí)n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知△ABC中,滿足sin2B+sin2C>sinBsinC+sin2A,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,a2=3,若|an+1﹣an|=2n(n∈N*),且{a2n﹣1}是遞增數(shù)列、{a2n}是遞減數(shù)列,則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線C: ,F(xiàn)1 , F2為其左右兩個(gè)焦點(diǎn).
(1)設(shè)O為坐標(biāo)原點(diǎn),M為雙曲線C右支上任意一點(diǎn),求 的取值范圍;
(2)若動(dòng)點(diǎn)P與雙曲線C的兩個(gè)焦點(diǎn)F1 , F2的距離之和為定值,且cos∠F1PF2的最小值為 ,求動(dòng)點(diǎn)P的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com