【題目】在一次水下考古活動中,某一潛水員需潛水50米到水底進行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.3升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升;潛水員在此次考古活動中的總用氧量為升.

(1)如果水底作業(yè)時間是10分鐘,將表示為的函數(shù);

(2)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍;

(3)若潛水員攜帶氧氣13.5升,請問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

【答案】(1) ;(2) ;(3)18.

【解析】試題分析:

(1)由題意結(jié)合下潛時間和返回時間可得函數(shù)解析式為: ;

(2)結(jié)合(1)中函數(shù)的解析式結(jié)合函數(shù)的定義域可得總用氧量的取值范圍是.

(3)由題意可知潛水員在潛水與返回最少要用8升氧氣,據(jù)此可得潛水員最多在水下18分鐘.

試題解析:

1)依題意下潛時間分鐘,返回時間分鐘,

整理得∴.

2)由(1)同理可得∴ .

函數(shù)在是減函數(shù), 是增函數(shù),

時, ,當時, ,

所以總用氧量的取值范圍是.

3)潛水員在潛水與返回最少要用8升氧氣,則在水下時間最長為分鐘

所以潛水員最多在水下18分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有一塊圓心,半徑為200米,圓心角為的扇形綠地,半徑的中點分別為,為弧上的一點,設(shè),如圖所示,擬準備兩套方案對該綠地再利用.

(1)方案一:將四邊形綠地建成觀賞魚池,其面積記為,試將表示為關(guān)于的函數(shù)關(guān)系式,并求為何值時,取得最大?

(2)方案二:將弧和線段圍成區(qū)域建成活動場地,其面積記為,試將表示為關(guān)于的函數(shù)關(guān)系式;并求為何值時,取得最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 分別為等差數(shù)列和等比數(shù)列, , 的前項和為.函數(shù)的導(dǎo)函數(shù)是,有,且是函數(shù)的零點.

(1)求的值;

(2)若數(shù)列公差為,且點,當時所有點都在指數(shù)函數(shù)的圖象上.

請你求出解析式,并證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(1)班學(xué)生為了籌措經(jīng)費給班上購買課外讀物,班委會成立了一個社會實踐小組,決定利用暑假八月份(30天計算)輪流換班去銷售一種時令水果.在這30天內(nèi)每斤水果的收入(元)與時間(天)的部分數(shù)據(jù)如下表所示,已知日銷售(斤)與時間(天)滿足一次函數(shù)關(guān)系.

(1)根據(jù)提供的圖象和表格,下廚每斤水果的收入(元)與時間(天)所滿足的函數(shù)關(guān)系式及日銷售量(斤)與時間(天)的一次函數(shù)關(guān)系;

(2)用(元)表示銷售水果的日收入,寫出的函數(shù)關(guān)系式,并求這30天中第幾天日收入最大,最大值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:不等式2x﹣x2<m對一切實數(shù)x恒成立,命題q:m2﹣2m﹣3≥0,如果¬p與“p∧q”同時為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a是實數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1﹣2x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

測試后,從中隨機抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):

(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實測的答對人數(shù)及相應(yīng)的實測難度填入下表,并估計這120名學(xué)生中第5題的實測答對人數(shù);

(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;

(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預(yù)估難度(.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為(
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小滿分13分)如圖,三棱柱中,,,

(1)證明:;

(2),求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案