已知圓滿足以下三個(gè)條件:(1)圓心在直線上,(2)與直線相切,(3)截直線所得弦長為6。求圓的方程。

解析試題分析:∵圓心C在直線x-y-1=0上,∴圓心C(a,a-1),又圓
與直線相切,截直線所得弦長為6所以,,解得,,故圓的方程
考點(diǎn):點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程。
點(diǎn)評(píng):中檔題,求圓的方程,可以根據(jù)條件靈活假設(shè)出方程的形式,一般地,涉及圓心、半徑時(shí),設(shè)標(biāo)準(zhǔn)方程,涉及圓上點(diǎn)的坐標(biāo)時(shí),設(shè)一般形式。本題對(duì)計(jì)算能力要求較高。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點(diǎn)為,試探究在圓上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有一個(gè)不透明的袋子,裝有4個(gè)完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個(gè)不放回取球兩次,求第一次取到球的編號(hào)為偶數(shù)且兩個(gè)球的編號(hào)之和能被3整除的概率;
(2)若先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為a,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為b,求直線ax+by+1=0與圓有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線L:與圓C:,
(1) 若直線L與圓相切,求m的值。
(2) 若,求圓C 截直線L所得的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點(diǎn)到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與圓交于、兩點(diǎn),記△的面積為(其中為坐標(biāo)原點(diǎn)).
(1)當(dāng),時(shí),求的最大值;
(2)當(dāng),時(shí),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線過定點(diǎn).
(1)求圓心的坐標(biāo)和圓的半徑;
(2)若與圓C相切,求的方程;
(3)若與圓C相交于P,Q兩點(diǎn),求三角形面積的最大值,并求此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被曲線C所截線段的長度.

查看答案和解析>>

同步練習(xí)冊(cè)答案