已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值為8,求二次函數(shù)f(x)的解析式.
f(x)=-4x2+4x+7
(解法1:利用一般式)設(shè)f(x)=ax2+bx+c(a≠0),解得
∴所求二次函數(shù)為f(x)=-4x2+4x+7.
(解法2:利用頂點(diǎn)式)設(shè)f(x)=a(x-m)2+n,∵f(2)=f(-1),∴拋物線對稱軸為x=,即m=;又根據(jù)題意,函數(shù)最大值ymax=8,
∴n=8,∴f(x)=a2+8.∵f(2)=-1,∴a+8=-1,解得a=-4.
∴f(x)=-42+8=-4x2+4x+7.
(解法3:利用兩根式)由題意知f(x)+1=0的兩根為x1=2,x2=-1,故可設(shè)f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函數(shù)有最大值ymax=8,即=8,解得a=-4或a=0(舍),∴所求函數(shù)的解析式為f(x)=-4x2-(-4)x-2×(-4)-1=-4x2+4x+7
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在區(qū)間[0,1]上有最小值-2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=
2x,x∈(-∞,2)
log2x,x∈(2,+∞)
,則滿足f(x)=4的x的值是(  )
A.2B.16C.2或16D.-2或16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線軸的兩個(gè)交點(diǎn)的橫坐標(biāo)分別為1和3,則不等式的解集是                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)max{f(x),g(x)}=,若函數(shù)n(x)=x2+px+q(p,q∈R)的圖象經(jīng)過不同的兩點(diǎn)(,0)、(,0),且存在整數(shù)n使得n<<<n+1成立,則(    )
A.max{n(n),n(n+1)}>1B.max{n(n),n(n+1)}<1
C.max{n(n),n(n+1)}>D.max{n(n),n(n+1)}>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)二次函數(shù)f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),則f(x1+x2)等于(  )
A.-B.-
C.cD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上變化時(shí),y恒取正值,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象為曲線,函數(shù)的圖象為曲線,過軸上的動點(diǎn)作垂直于軸的直線分別交曲線,兩點(diǎn),則線段長度的最大值為(   )
A.2B.4C.5D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù) 的定義域?yàn)镽,則a的取值范圍是(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案