(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的短軸長等于焦距,橢圓C上的點到右焦點的最短距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點且斜率為的直線與交于、兩點,是點關于軸的對稱點,證明:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知為坐標原點,點分別在軸軸上運動,且=8,動點滿足 =,設點的軌跡為曲線,定點為直線交曲線于另外一點
(1)求曲線的方程;
(2)求 面積的最大值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知動點到的距離比它到軸的距離多一個單位.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作曲線的切線,求切線的方程,并求出與曲線及軸所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在中,兩個定點,的垂心H(三角形三條高線的交點)是AB邊上高線CD的中點。
(1)求動點C的軌跡方程;
(2)斜率為2的直線交動點C的軌跡于P、Q兩點,求面積的最大值(O是坐標原點)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍,且經(jīng)過點(2,1),平行于直線在軸上的截距為,設直線交橢圓于兩個不同點、,
(1)求橢圓方程;
(2)求證:對任意的的允許值,的內心在定直線。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com