8.把1+(1+x)+(1+x)2+…+(1+x)n展開成關(guān)于x的多項(xiàng)式,其各項(xiàng)系數(shù)和為f(n),則不等式f(n)≥n2+2的解集為(  )
A.[1,+∞)B.[0,+∞)C.[0,1]D.[0,2]

分析 利用賦值法,通過x=1直接求出展開式各項(xiàng)系數(shù)和f(n)的值,代入f(n)≥n2+2,利用導(dǎo)數(shù)可得不等式f(n)≥n2+2的解集為[1,+∞).

解答 解:當(dāng)x=1時,1+(1+x)+(1+x)2+…+(1+x)n展開成關(guān)于x的多項(xiàng)式,其各項(xiàng)系數(shù)和為f(n)=1+2+22+23+…+2n=$\frac{1×(1-{2}^{n+1})}{1-2}$=2n+1-1,
代入f(n)≥n2+2,得2n+1-1>n2+2,即2n+1>n2+3,
令g(n)=2n+1-n2-3,g′(n)=2n+1ln2-2n,當(dāng)n≥1時,g′(n)≥0,g(n)在[1,+∞)上為增函數(shù),
又g(1)=22-1-3=0,
∴不等式f(n)≥n2+2的解集為[1,+∞),
故選:A.

點(diǎn)評 本題考查二項(xiàng)式定理的應(yīng)用,賦值法以及數(shù)列求和的基本方法,考查計(jì)算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個玻璃瓶中裝有大小相等質(zhì)地均勻顏色各不相同的玻璃小球共3個,現(xiàn)隨機(jī)的倒出小球(至少倒出一個),倒后重新將倒出小球裝回原瓶中,進(jìn)行下一次操作.現(xiàn)通過倒玻璃球走跳棋游戲,規(guī)則如下:棋盤上標(biāo)有第0站,第1站,第2站…一枚棋子開始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個,將棋子向前走一步;若倒出的小球是偶數(shù)個,則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準(zhǔn)備下一次操作.設(shè)棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個的概率;
(2)求P1、P2;
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知某商場新進(jìn)3000袋奶粉,為檢查其三聚氰胺是否超標(biāo),現(xiàn)采用系統(tǒng)抽樣的方法從中抽取200袋檢查,若第一組抽出的號碼是7,則第四十一組抽出的號碼為607.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域?yàn)閇m,n],若存在k∈N*,使得函數(shù)f(x)的值域?yàn)閇km,kn],則稱函數(shù)f(x)為“k-倍乘函數(shù)”.
(1)請判斷函數(shù)f(x)=2x,x∈[1,2]是否是“2-倍乘函數(shù)”;
(2)已知函數(shù)g(x)=x2,問是否存在k∈N*,使g(x)在[2,4]上為“k-倍乘函數(shù)”;
(3)已知函數(shù)h(x)=-x2+4在區(qū)間[m,n]上為“2-倍乘函數(shù)”,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集為U=R,集合A={x||x|≤2},B={x|$\frac{1}{x-1}$>0},則(∁UA)∩B=(  )
A.[-2,1]B.(2,+∞)C.(1,2]D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過平面區(qū)域$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$內(nèi)一點(diǎn)P作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,記∠APB=α,當(dāng)α最大時,此時點(diǎn)P坐標(biāo)為( 。
A.(-2,0)B.(0,-2)C.(-4,-2)D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x1y取值如下表,從所得的點(diǎn)圖分析,y與線性相關(guān),且y=1.1x+a,則a=0.8
x0134
y1236

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知1>a>b>c>0,且a,b,c依次成等比數(shù)列,設(shè)m=logab,n=logbc,p=logca,則m、n、p的大小關(guān)系為(  )
A.p>n>mB.m>p>nC.p>m>nD.m>n>p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABC中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明MN∥平面PAB
(2)(文)求四面體N-BCM的體積.
(理)求二面角N-AM-C的正切值.

查看答案和解析>>

同步練習(xí)冊答案