18.為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級(jí)進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖:記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計(jì)
成績(jī)優(yōu)良
成績(jī)不優(yōu)良
總計(jì)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
獨(dú)立性檢驗(yàn)臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

分析 (1)根據(jù)莖葉圖計(jì)算甲、乙兩班數(shù)學(xué)成績(jī)前10名學(xué)生的平均分即可;
(2)填寫(xiě)列聯(lián)表,計(jì)算K2,對(duì)照數(shù)表即可得出結(jié)論.

解答 解:(1)甲班樣本化學(xué)成績(jī)前十的平均分為${\overline x_甲}=\frac{1}{10}({72+74+74+79+79+80+81+85+89+96})=80.9$;…(2分)
乙班樣本化學(xué)成績(jī)前十的平均分為${\overline x_乙}=\frac{1}{10}({78+80+81+85+86+93+96+97+99+99})=89.4$.…(4分)
甲班樣本化學(xué)成績(jī)前十的平均分遠(yuǎn)低于乙班樣本化學(xué)成績(jī)前十的平均分,大致可以判斷“高效課堂”教學(xué)方式的教學(xué)效果更佳.…(6分)
(2)

甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)良101625
成績(jī)不優(yōu)良10414
總計(jì)202040
…(8分)
根據(jù)2×2列聯(lián)表中的數(shù)據(jù),得K2的觀測(cè)值為$k=\frac{{40{{({10×4-16×10})}^2}}}{26×14×20×20}≈3.956>3.841$,…(10分)
∴能在犯錯(cuò)概率不超過(guò)0.05的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.…(12分)

點(diǎn)評(píng) 本題考查了計(jì)算平均數(shù)與獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)列聯(lián)表求出觀測(cè)值,對(duì)照臨界值表得出結(jié)論,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)t的值為(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.i為虛數(shù)單位,則${(\frac{1+i}{1-i})^{2007}}$=( 。
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示,兩函數(shù)y1=k1x+b和y2=k2x的圖象相交于點(diǎn)(-1,-2),則關(guān)于x的不等式 k1x+b>k2x的解集為( 。
A.x>-1B.x<-1C.x<-2D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖四棱錐P-ABCD,四邊形ABCD是正方形,O是正方形的中心,E是PC的中點(diǎn),且PA=AB=PB.
(1)求證:PA∥平面BDE;
(2)求EO與AB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=tlnx與函數(shù)g(x)=x2-1在點(diǎn)(1,0)處有共同的切線(xiàn)l,則t的值是( 。
A.$t=\frac{1}{2}$B.t=1C.t=2D.t=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若指數(shù)函數(shù)f(x)=(3m-1)x在R上是減函數(shù),則實(shí)數(shù)m的取值范圍是( 。
A.m>0且m≠1B.m≠$\frac{1}{3}$C.m>$\frac{1}{3}$且m≠$\frac{2}{3}$D.$\frac{1}{3}$<m<$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若集合A={x|x2-9x<0},B={x|1<2x<8},則集合A∩B=(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y=f(x)滿(mǎn)足f(-2)=f(4)=-16,且函數(shù)f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案