4.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e,一條漸近線的斜率為k(k>0),若e=2k,則這條漸近線的傾斜角為( 。
A.30°B.45°C.60°D.120°

分析 由題意,$\frac{c}{a}=2•\frac{a}$,可得a,b的關(guān)系,即可得出結(jié)論.

解答 解:由題意,$\frac{c}{a}=2•\frac{a}$,
∴c=2b
∴a=$\sqrt{{c}^{2}-^{2}}$=$\sqrt{3}$b,
∴$\frac{a}$=$\frac{\sqrt{3}}{3}$=tan30°,
故選A.

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$+$\frac{1}{1+{4}^{x}}$滿足條件f(loga($\sqrt{2}$+1))=1,其中a>1,則f(loga($\sqrt{2}$-1))=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的離心率的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=loga(x-2)的圖象經(jīng)過一個定點(diǎn),該定點(diǎn)的坐標(biāo)為(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x|x-2|.
(1)作出函數(shù)f(x)=x|x-2|的大致圖象;
(2)若方程f(x)-k=0有三個解,求實(shí)數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{6}{x-1}$,
(Ⅰ)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性并用單調(diào)性的定義證明;
(Ⅱ)x∈[2,4],求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={x|2kπ+$\frac{π}{3}$<x<2kπ+$\frac{5π}{3}$,k∈Z},B={x|-4<x<4},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)x>0,y>0,且x+y=18,則xy的最大值為81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+$\frac{ax}{x-1}$
(1)若函數(shù)有兩個極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)討論f(x)的零點(diǎn)個數(shù).

查看答案和解析>>

同步練習(xí)冊答案