設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn.

(Ⅰ)若首項(xiàng),公差,求滿足的正整數(shù)k;

(Ⅱ)求所有的無窮等差數(shù)列{an},使得對(duì)于一切正整數(shù)k都有成立.

 

答案:
解析:

解:(I)當(dāng)時(shí),

  ,

                .

  II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,

  
     

1

  

2

     
 
 

  由(1)得

  當(dāng)

  成立

 

     故所得數(shù)列不符合題意.

  當(dāng)

 

  .

  綜上,共有3個(gè)滿足條件的無窮等差數(shù)列:

  ①{an} : an=0,即0,00,

  ②{an} : an=1,即11,1;

    {an} : an=2n-1,即1,3,5,,

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)若數(shù)列首項(xiàng)為a1=
32
,公差d=1,求滿足Sk2=(Sk2的正整數(shù)k的值;
(2)若Sn=n2,求通項(xiàng)an;
(3)求所有無窮等差數(shù)列{an},使得對(duì)于一切正整數(shù)k都有Sk2=(Sk2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn
(1)若首項(xiàng)a1=
32
,公差d=1,滿足Sk2=(Sk2的正整數(shù)k=
4
4
;
(2)對(duì)于一切正整數(shù)k都有Sk2=(Sk2成立的所有的無窮等差數(shù)列是
an=0或an=1或an=2n-1
an=0或an=1或an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn,求所有的無窮等差數(shù)列{an},使得對(duì)于一切正整數(shù)k都有Sk3=(Sk)3成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•江蘇)設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn
(Ⅰ)若首項(xiàng)a1=
32
,公差d=1.求滿足Sk2=(Sk)2的正整數(shù)k;
(Ⅱ)求所有的無窮等差數(shù)列{an},使得對(duì)于一切正整數(shù)k都有Sk2=(Sk)2成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高三數(shù)學(xué)二輪沖刺練習(xí)試卷(08)(解析版) 題型:解答題

設(shè)無窮等差數(shù)列{an}的前n項(xiàng)和為Sn
(Ⅰ)若首項(xiàng)a1=,公差d=1.求滿足的正整數(shù)k;
(Ⅱ)求所有的無窮等差數(shù)列{an},使得對(duì)于一切正整數(shù)k都有成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案