3.已知{|an|}是首項(xiàng)和公差均為1的等差數(shù)列,則a2=±2,若S2=a1+a2,則S2的所有可能值組成的集合為{-3,-1,1,3}.

分析 解:由題意|an|=n,分別求出a1、a2的值,再求對應(yīng)的S2即可.

解答 解:由題意|an|=n,n∈N*,
∴a1=±1,a2=±2;
當(dāng)a1=1,a2=2時,S2=3;
當(dāng)a1=1,a2=-2時,S2=-1;
當(dāng)a1=-1,a2=-2時,S2=-3;
當(dāng)a1=-1,a2=2時,S2=1;
所以S2的所有可能值組成的集合為{-3,-1,1,3}.
故答案為:±2;{-3,-1,1,3}.

點(diǎn)評 本題考查了等差數(shù)列的定義與通項(xiàng)公式的應(yīng)用問題,考查了分類討論思想,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>b>0,且a,b,-2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中的假命題是( 。
A.?x∈R,lg x=0B.?x∈R,tan x=1C.?x∈R,x3>0D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=sin(ax+\frac{π}{3})(a>0)$圖象相鄰兩對稱軸間的距離為4,則a的值是( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知四棱錐P-ABCD的底面ABCD是邊長為a的正方形,其外接球的表面積為28π,△PAB是等邊三角形,平面PAB⊥平面ABCD,則a=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ax2+b(lnx-x),g(x)=-$\frac{1}{2}x$2+(1-b)x,已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x-y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)f(x)的極值點(diǎn);
(Ⅲ)若對于任意b∈(1,+∞),總存在x1,x2∈[1,b],使得f(x1)-f(x2)-1>g(x1)-g(x2)+m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:y2=2px(p>0)上一點(diǎn)A(4,m)到其焦點(diǎn)的距離為$\frac{17}{4}$,則p的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$f(x)=({x^3}-mx)ln({x^2}+1-m)_{\;}^{\;}(m∈R)$,方程f(x)=0有3個不同的根.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)m,使得f(x)在(0,1)上恰有兩個極值點(diǎn)x1,x2且滿足x2=2x1,若存在,求實(shí)數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2sinx,x∈[0,π]}\\{|cosx|,x∈(π,2π]}\end{array}\right.$,若函數(shù)g(x)=f(x)-m在[0,2π]內(nèi)恰有4個不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(0,1)B.[1,2]C.(0,1]D.(1,2)

查看答案和解析>>

同步練習(xí)冊答案