【題目】已知, .

(1)討論函數(shù)的單調性;

(2)記,設, 為函數(shù)圖象上的兩點,且.

(i)當時,若, 處的切線相互垂直,求證:

(ii)若在點, 處的切線重合,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)先求函數(shù)導數(shù),轉化為研究導函數(shù)零點,即方程=0的根的情況,當,導函數(shù)不變號,在上單調遞減,當時,有兩個不等根,列表分析導函數(shù)符號變化規(guī)律,確定對應單調區(qū)間,(2)(i)利用導數(shù)幾何意義化簡條件: , 處的切線相互垂直,得,利用基本不等式證明不等式,(ii)先分別求出切線方程,再根據(jù)切線重合得,消元,利用導數(shù)研究函數(shù), 單調性,確定函數(shù)值域,進而確定的取值范圍.

試題解析:解:(1),則

時, , 上單調遞減,

時即時, ,

此時上都是單調遞減的,在上是單調遞增的;

(2)(i),據(jù)題意有,又,

,

法1: ,

當且僅當 時取等號.

法2: ,

當且僅當時取等號.

(ii)要在點處的切線重合,首先需要在點處的切線的斜率相等,

時, ,則必有,即, ,

處的切線方程是:

處的切線方程是:

,

據(jù)題意則,

, , ,

, 上恒成立,

上單調遞增

, 上單調遞增,

,再設, ,

上單調遞增,

恒成立,

即當時, 的值域是,

,即為所求.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,隔河看兩目標A、B,但不能到達,在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內),求兩目標A、B之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知,

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的大。

(Ⅲ)當的長為何值時,二面角的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻轉過程中: ①|BM|是定值;
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是(

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)當x∈[ , ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,3,4,5,6},B={4,5,6,7,8},則滿足SA且S∩B≠的集合S的個數(shù)是(
A.57
B.56
C.49
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以為頂點的六面體中, 均為等邊三角形,且平面平面, 平面 , .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x+1)的定義域是[﹣1,3],則y=f(x2)的定義域是(
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣σ<X≤μ+σ)=0.6826,若μ=4,σ=1,則P(5<X<6)=( )
A.0.1358
B.0.1359
C.0.2716
D.0.2718

查看答案和解析>>

同步練習冊答案