【題目】某種產(chǎn)品的質(zhì)量以其指標值來衡量,其指標值越大表明質(zhì)量越好,且指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的指標值,得到了下面的試驗結(jié)果: A配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

8

20

42

22

8

B配方的頻數(shù)分布表

指標值分組

[90,94)

[94,98)

[98,102)

[102,106)

[106,110]

頻數(shù)

4

12

42

32

10


(1)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用B配方生產(chǎn)的一件產(chǎn)品的利潤y(單位:元)與其指標值t的關(guān)系式為y= ,估計用B配方生產(chǎn)的一件產(chǎn)品的利潤大于0的概率,并求用B配方生產(chǎn)的上述產(chǎn)品平均每件的利潤.

【答案】
(1)解:由試驗結(jié)果知,用A配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)的頻率為 =0.3

∴用A配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計值為0.3.

由試驗結(jié)果知,用B配方生產(chǎn)的產(chǎn)品中優(yōu)質(zhì)品的頻率為 =0.42

∴用B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率的估計值為0.42


(2)解:用B配方生產(chǎn)的100件產(chǎn)品中,其質(zhì)量指標值落入?yún)^(qū)間

[90,94),[94,102),[102,110]的頻率分別為0.04,0.54,0.42,

∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,

即X的分布列為

X

﹣2

2

4

P

0.04

0.54

0.42

∴X的數(shù)學(xué)期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68


【解析】(1)根據(jù)所給的樣本容量和兩種配方的優(yōu)質(zhì)的頻數(shù),兩個求比值,得到用兩種配方的產(chǎn)品的優(yōu)質(zhì)品率的估計值.(2)根據(jù)題意得到變量對應(yīng)的數(shù)字,結(jié)合變量對應(yīng)的事件和第一問的結(jié)果寫出變量對應(yīng)的概率,寫出分布列和這組數(shù)據(jù)的期望值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·武邑中學(xué)]已知關(guān)于的一元二次方程,

(1)若一枚骰子擲兩次所得點數(shù)分別是,,求方程有兩根的概率;

(2)若,,求方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點,滿足 = ,若存在求m值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)使方程在區(qū)間上恰有三個解,則實數(shù)的值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷錯誤的是______(填寫序號)

①集合{y|y=}4個子集;

②若α≠β,則tanα≠tanβ;

③若log2alog2b,則2a2b;

④設(shè)函數(shù)fx=log2x的反函數(shù)為gx),則g2=1;

⑤已知定義在R上的奇函數(shù)fx)在(-∞,0)內(nèi)有1008個零點,則函數(shù)fx)的零點個數(shù)為2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O是坐標原點,橢圓C:x2+3y2=6的左右焦點分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點, (Ⅰ)若直線PQ過橢圓C的右焦點F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).

1)已知(x=,x[0,1]利用上述性質(zhì),求函數(shù)fx)的值域;

2)對于(1)中的函數(shù)fx)和函數(shù)gx=-x+2a.若對任意x1[0,1],總存在x2[0,1],使得gx2=fx1)成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四個不同的盒子里面放了個不同的水果,分別是桔子、香蕉、葡萄、以及西瓜,讓小明、小紅、小張、小李四個人進行猜測

小明說:第個盒子里面放的是香蕉,第個盒子里面放的是葡萄;

小紅說:第個盒子里面放的是香蕉,第個盒子里面放的是西瓜;

小張說:第個盒子里面敬的是香蕉,第個盒子里面放的是葡萄;

小李說:第個盒子里面放的是桔子,第個盒子里面放的是葡萄;

如果說:“小明、小紅、小張、小李,都只說對了一半!眲t可以推測,第個盒子里裝的是( )

A. 西瓜 B. 香蕉 C. 葡萄 D. 桔子

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD-A1B1C1D1中,求證:

1AB∥平面A1B1C;

2)平面ABB1A1⊥平面A1BC

查看答案和解析>>

同步練習(xí)冊答案