為漸近線,且經(jīng)過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程是          

解析試題分析:漸近線為的雙曲線可設(shè)為,代入點(diǎn)
所以雙曲線為整理為
考點(diǎn):雙曲線方程及性質(zhì)
點(diǎn)評(píng):雙曲線焦點(diǎn)在x軸時(shí),漸近線方程為,焦點(diǎn)在y軸時(shí),漸近線方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下列關(guān)于圓錐曲線的命題:其中真命題的序號(hào)___________.(寫出所有真命題的序號(hào))。
① 設(shè)為兩個(gè)定點(diǎn),若,則動(dòng)點(diǎn)的軌跡為雙曲線;
② 設(shè)為兩個(gè)定點(diǎn),若動(dòng)點(diǎn)滿足,且,則的最大值為8;
③ 方程的兩根可分別作橢圓和雙曲線的離心率;
④ 雙曲線與橢圓有相同的焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線的離心率是,則         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)中心在原點(diǎn)的雙曲線與橢圓+y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該雙曲線的方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

雙曲線的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則m等于             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

橢圓(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知橢圓C1的中心在原點(diǎn)、焦點(diǎn)在x軸上,拋物線C2的頂點(diǎn)在原點(diǎn)、焦點(diǎn)在x軸上。小明從曲線C1,C2上各取若干個(gè)點(diǎn)(每條曲線上至少取兩個(gè)點(diǎn)),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個(gè)點(diǎn)既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:

X
 
-2
 
-
 
0
 
2
 
2
 
3
 
Y
 
2
 
0
 

 
-2
 

 
-2
 
據(jù)此,可推斷橢圓C1的方程為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,在平面斜坐標(biāo)系xOy中,,平面上任意一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)這樣定義:若(其中分別是x軸,y軸正方向的單位向量),則P點(diǎn)的斜坐標(biāo)為(x,y),向量的斜坐標(biāo)為(x,y).給出以下結(jié)論:

①若,P(2,-1),則;
②若,則;
③若(x,y),,則
④若,,則;
⑤若,以O(shè)為圓心,1為半徑的圓的斜坐標(biāo)方程為
其中所有正確的結(jié)論的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F(,0),直線與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是      .

查看答案和解析>>

同步練習(xí)冊(cè)答案