.已知函數(shù)f ( x ) = 3x , f ( a + 2 ) =" 18" , g ( x ) =· 3ax – 4x的定義域?yàn)閇0,1].
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍.

(Ⅰ)a = log32 ;(Ⅱ)2

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/04/d/1rtug2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求的值;  (Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)均為實(shí)數(shù),且滿足,對(duì)于任意實(shí)數(shù)都有,并且當(dāng)時(shí)有成立。
(1)求的值;
(2)證明:
(3)當(dāng)∈[-2,2]且取最小值時(shí),函數(shù)為實(shí)數(shù))是單調(diào)函數(shù),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)對(duì)任意實(shí)數(shù)恒有且當(dāng)x>0,

(1)判斷的奇偶性;
(2)求在區(qū)間[-3,3]上的最大值;
(3)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知
⑴求的值;      ⑵判斷的奇偶性。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當(dāng)時(shí),的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實(shí)數(shù),使得函數(shù)上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)利用單調(diào)函數(shù)的定義證明:函數(shù)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知函數(shù)y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數(shù),當(dāng)x>0時(shí),f(x)有最小值2,其中b∈N且f(1)<.試求函數(shù)f(x)的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)y=f (x)=在區(qū)間 (-2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案