16.若$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\ \frac{1}{x},x>0\end{array}\right.$,則f(f(-2))=9.

分析 先求出f(-2)=3-2=$\frac{1}{9}$,從而f(f(-2))=f($\frac{1}{9}$),由此能求出函數(shù)值.

解答 解:∵$f(x)=\left\{\begin{array}{l}{3^x},x≤0\\ \frac{1}{x},x>0\end{array}\right.$,
∴f(-2)=3-2=$\frac{1}{9}$,
∴f(f(-2))=f($\frac{1}{9}$)=$\frac{1}{\frac{1}{9}}$=9.
故答案為:9.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3-5x2-bx,a,b∈R,x=3是f(x)的極值點,且f(1)=-1.
(1)求實數(shù)a,b的值;
(2)求f(x)在[2,4]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.[-1,1]C.(-∞,2]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)$f(x)=\sqrt{3}sin(2x+φ)+cos(2x+φ)(|φ|<\frac{π}{2})$為偶函數(shù),則( 。
A.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為增函數(shù)
B.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為增函數(shù)
C.f(x)的最小正周期為$\frac{π}{2}$,且在$(0,\frac{π}{4})$上為減函數(shù)
D.f(x)的最小正周期為π,且在$(0,\frac{π}{2})$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=λSn+1(n∈N*,λ>0),且a1,a2+2,a3+3成等差數(shù)列.
(I)求數(shù)列{an}的通項公式;
(II)令bn=(-1)nlog2an•log2an+1,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,以橢圓C的上頂點T為圓心作圓T:x2+(y-1)2=r2(r>0),圓T與橢圓C在第一象限交于點A,在第二象限交于點B.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求$\overrightarrow{TA}•\overrightarrow{TB}$的最小值,并求出此時圓T的方程;
(Ⅲ)設(shè)點P是橢圓C上異于A,B的一點,且直線PA,PB分別與Y軸交于點M,N,O為坐標原點,求證:|OM|•|ON|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對應(yīng)數(shù)據(jù)如表所示:
x3456
y2.5344.5
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為y=0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計相應(yīng)的生產(chǎn)能耗為(  )噸.
A.5.25B.5.15C.5.5D.9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=sinx+x-1的圖象在x=0處的切線方程為y=2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=lnx-3x,則曲線y=f(x)在點(1,f(1))處的切線方程是2x+y+1=0.

查看答案和解析>>

同步練習(xí)冊答案