在△ABC中,點P在BC上,且,點Q是AC的中點,若,則=( )
A.(-2,7)
B.(-6,21)
C.(2,-7)
D.(6,-21)
【答案】分析:利用向量的坐標(biāo)形式的運算法則求出,利用向量共線的充要條件求出,利用向量共線的充要條件求出
解答:解:=(-3,2)
∵點Q是AC的中點



=(_6,21)
故選B
點評:本題考查向量的運算法則、向量共線的充要條件:?
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q是AC的中點,若
PA
=(4,3)
PQ
=(1,5)
,則
BC
=(  )
A、(-2,7)
B、(-6,21)
C、(2,-7)
D、(6,-21)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q是AC的中點,若
PA
=(4,3)
,
PQ
=(1,5)

BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,Q是AC的中點,以P為坐標(biāo)原點建立平面直角坐標(biāo)系,若
PA
=(4,3),
PQ
=(1,5)
,則
BC
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點P在BC上,且
BP
=2
PC
,點Q為
AC
中點,若
PA
=(4,3),
PQ
=(1,5),則
BC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點PBC上,且=2,點QAC的中點,若=(4,3),=(1,5),則=(  )

A.(-2,7)              B.(-6,21)

C.(2,-7)         D.(6,-21)

查看答案和解析>>

同步練習(xí)冊答案