已知,函數(shù)
(1)求的極小值;
(2)若在上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在(是自然對(duì)數(shù)的底數(shù))上至少存在一個(gè),使得成立,求的取值范圍.
(1).(2) 的取值范圍是.
(3)要在上存在一個(gè),使得,必須且只需.
解析試題分析:(1)由題意,,,∴當(dāng)時(shí),;當(dāng)時(shí),,所以,在上是減函數(shù),在上是增函數(shù),故. 4分
(2) ,,由于在內(nèi)為單調(diào)增函數(shù),所以在上恒成立,即在上恒成立,故,所以的取值范圍是. 9分
(3)構(gòu)造函數(shù),
當(dāng)時(shí),由得,,,所以在上不存在一個(gè),使得.
當(dāng)時(shí),,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/44/a/6legc2.png" style="vertical-align:middle;" />,所以,,所以在上恒成立,故在上單調(diào)遞增,,所以要在上存在一個(gè),使得,必須且只需,解得,故的取值范圍是.
另法:(Ⅲ)當(dāng)時(shí),.
當(dāng)時(shí),由,得 , 令,則,所以在上遞減,.
綜上,要在上存在一個(gè),使得,必須且只需.
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式恒成立問(wèn)題。
點(diǎn)評(píng):難題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,通過(guò)研究函數(shù)的單調(diào)性,明確了極值情況。通過(guò)研究函數(shù)的單調(diào)區(qū)間、極值,最終確定最值情況。涉及恒成立問(wèn)題,往往通過(guò)構(gòu)造函數(shù),研究函數(shù)的最值,得到解題目的。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若是偶函數(shù),在定義域上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),令,問(wèn)是否存在實(shí)數(shù),使在上是減函數(shù),在上是增函數(shù)?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/7/19h3k2.png" style="vertical-align:middle;" />
(1)求的值;
(2)若關(guān)于的函數(shù)在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知.
(1)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)證明:(,,其中無(wú)理數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
①當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)在處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=-1時(shí),求函數(shù)的最大值;
(3)當(dāng),時(shí),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com