【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=( )
A.[﹣2,4)
B.(﹣1,3]
C.[﹣2,﹣1]
D.[﹣1,3]
【答案】D
【解析】解:全集U=R,集合A={x|x2﹣x﹣6≤0}={x|﹣2≤x≤3}, ={x|x<﹣1或x≥4},
∴UB={x|﹣1≤x<4},
∴A∩(UB)={x|﹣1≤x≤3}=[﹣1,3].
故選:D.
【考點精析】通過靈活運用交、并、補集的混合運算,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) 的最小值為0,不等式 的解集為 .
(1)求集合 ;
(2)設(shè)集合 ,若集合 是集合 的子集,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) 是實數(shù),則“ ”是“ ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為F1(﹣ ,0),F(xiàn)2( ,0),M是橢圓上一點,若 =0,| || |=8.
(1)求橢圓的方程;
(2)點P是橢圓上任意一點,A1、A2分別是橢圓的左、右頂點,直線PA1 , PA2與直線x= 分別交于E,F(xiàn)兩點,試證:以EF為直徑的圓交x軸于定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.
(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;
(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)和,定義運算“*”:,設(shè),且關(guān)于的方程為恰有三個互不相等的實數(shù)根,則的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標(biāo)準如表:
階梯級別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) | (0,10] | (10,15] | (15,+∞) |
從本市隨機抽取了10戶家庭,統(tǒng)計了同一個月的用水量,得到如圖所示的莖葉圖.
(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當(dāng)a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com