函數(shù)f(x)=
1
2
(a x+a -x),(a>0且a≠1).
(1)討論f(x)的奇偶性;
(2)若函數(shù)f(x)的圖象經(jīng)過點(2,
41
9
),求f(x).
考點:指數(shù)函數(shù)綜合題,函數(shù)解析式的求解及常用方法,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)奇偶性的定義判斷f(x)的奇偶性;
(2)根據(jù)函數(shù)f(x)的圖象經(jīng)過點(2,
41
9
),可以求出a的值,然后求f(x).
解答: 解:(1)函數(shù)定義域為R,
∵f(x)=
1
2
(a x+a -x),(a>0且a≠1).
f(-x)=
1
2
(ax+a-x)=f(x)
,
∴f(x)是偶函數(shù).
(2)∵f(x)的圖象過點(2,
41
9

1
2
(a2+a-2)=
41
9
,
即9a4-82a2+9=0,
解得a2=9或a2=
1
9

∵a>0且a≠1,
∴a=3或a=
1
3
.  
f(x)=
1
2
(3x+3-x)
點評:本題主要考查函數(shù)奇偶性的判斷以及函數(shù)解析式的求法,考查學(xué)生的計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a=(
1
2
)
2
3
,b=(
1
5
)
2
3
,c=(
1
2
)
1
3
,則a,b,c大小關(guān)系是
 
(請用”<”號連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點數(shù),求方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+4,
(Ⅰ)若a=-2,求方程f(x)=0的根;
(Ⅱ)若函數(shù)f(x)滿足f(1+x)=f(1-x),求函數(shù)在x∈[-2,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
1
(2x-
1
x
)dx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算多項式f(x)=x6-12x5+60x4-160x3+240x2-192x+64當(dāng)x=2時v3的值為( 。
A、0B、-32C、80D、-80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過定點P(1,0),且與定直線l:x=-1相切;
(1)求動圓圓心M的軌跡方程;
(2)設(shè)過點P且斜率為-
3
的直線與曲線M相交于A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an=4an-1+3(n≥2),則數(shù)列an}的前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈[-
π
2
,
π
2
],則cosα
1
2
的概率為( 。
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

同步練習(xí)冊答案