某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進(jìn)行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進(jìn)行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(1)求這次鉛球測試成績合格的人數(shù);
(2)用此次測試結(jié)果估計全市畢業(yè)生的情況.若從今年的高中畢業(yè)生中隨機(jī)抽取兩名,記X表示兩人中成績不合格的人數(shù),求X的分布列及數(shù)學(xué)期望.
考點:離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計
分析:(1)由頻率分布直方圖求出第6小組的頻率,由此能求出此次測試總?cè)藬?shù),由此能求出這次鉛球測試成績合格的人數(shù).
(2)X=0,1,2,X~B(2,
7
25
),由此能求出X的分布列及數(shù)學(xué)期望.
解答: 解:(1)第6小組的頻率為1-(0.04+0.10+0.14+0.28+0.30)=0.14,
∴此次測試總?cè)藬?shù)為
7
0.14
=50(人).…(2分)
∴第4、5、6組成績均合格,人數(shù)為(0.28+0.30+0.14)×50=36(人)…(5分)
(2)X=0,1,2,此次測試中成績不合格的概率為
14
50
=
7
25
,…(6分)
∴X~B(2,
7
25
).…(7分)
P(X=0)=(
18
25
)2
=
324
625

P(X=1)=
C
1
2
(
7
25
)(
18
25
)=
252
625
,
P(X=2)=(
7
25
)2=
49
625
,…(10分)
所求分布列是:
X012
P
324
625
252
625
49
625
EX=
324
625
+1×
252
625
+2×
49
625
=
14
25
.…(12分)
點評:本題考查頻率分布直方圖的應(yīng)用,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時要認(rèn)真審題,注意二項分布的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用定義判斷函數(shù)y=x3+
1
x
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記關(guān)于x的不等式x2+(1-a)x-a<0的解集為P,不等式x2-2x≤0的解集為Q,若Q∪P=P,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD及其三視圖如下圖所示,E是側(cè)棱PC上的動點.
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?試證明你的結(jié)論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司對夏季室外工作人員規(guī)定如下:當(dāng)氣溫超過35℃時,室外連續(xù)工作時間嚴(yán)禁超過100分鐘;不少于60分鐘的,公司給予適當(dāng)補(bǔ)助.隨機(jī)抽取部分工人調(diào)查其高溫室外連續(xù)工作時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中工作時間范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求頻率分布直方圖中x的值;
(2)根據(jù)頻率分布直方圖估計樣本數(shù)據(jù)的中位數(shù);
(3)用這個樣本的頻率分布估計總體分布,將頻率視為概率;用分層抽樣的方法從享受補(bǔ)助人員和不享受補(bǔ)助人員中抽取25人的樣本,檢測他們健康狀況的變化,那么這兩種人員應(yīng)該各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+aln(1-x)(a∈R)的圖象關(guān)于原點對稱.
(1)求定義域;
(2)求a的值;
(3)若g(x)=ef(x)-
1-m
2+m
有零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓C1的參數(shù)方程為
x=4+4cosα
y=4sinα
(α為參數(shù)),圓C2的參數(shù)方程為
x=2cosβ
y=2+2sinβ
(β為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求C1和C2的極坐標(biāo)方程;
(Ⅱ)C1和C2交于O,P兩點,求P點的一個極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin
x
4
,2),
n
=(2cos
x
4
,cos2
x
4
),f(x)=
m
n

(1)若f(x)=2,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-
3
c)cosB=
3
bcosC,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O過平行四邊形ABCT的三個頂點B,C,T,且與AT相切,交AB的延長線于點D.
(1)求證:AT2=BT•AD;
(2)E、F是BC的三等分點,且DE=DF,求∠A.

查看答案和解析>>

同步練習(xí)冊答案