12.在△ABC中,∠A=60°,AB=2,且△ABC的面積S=$\frac{\sqrt{3}}{2}$,則AC的長(zhǎng)為( 。
A.2B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

分析 利用三角形面積計(jì)算公式即可得出.

解答 解:由三角形面積計(jì)算公式$\frac{\sqrt{3}}{2}$=S=$\frac{1}{2}×2×AC×sin6{0}^{°}$,
解得AC=1.
故選:B.

點(diǎn)評(píng) 本題考查了三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在空間直角坐標(biāo)系中,已知點(diǎn)A(2,4,-3),B(0,6,-1),則以線段AB為直徑的圓的面積等于3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,其中a>0.
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)h(x)=f(x)-1在區(qū)間[$\frac{1}{e}$,e]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某同學(xué)在求解某回歸方程中,已知x,y的取值結(jié)果(y與x呈線性相關(guān))如表:
x234
y64m
并且求得了線性回歸方程為$\widehat{y}$=-$\frac{1}{2}$x+$\frac{13}{2}$,則m等于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過(guò)點(diǎn)A(-1,1),B(1,3)且圓心在x軸上的圓的方程為( 。
A.(x+2)2+y2=10B.(x-2)2+y2=10C.x2+(y-2)2=2D.x2+(y+2)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在區(qū)間[-2,2]內(nèi)任取一個(gè)實(shí)數(shù)x,在區(qū)間[0,4]內(nèi)任取一個(gè)實(shí)數(shù)y,則y≥x2的概率等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且a2=2,S5=15.
(Ⅰ)求通項(xiàng)公式an;
(Ⅱ)若數(shù)列{bn}滿足bn=2an-an,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=25,S6=36,則an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.平面直角坐標(biāo)系中,與直線x-2y+3=0平行的一個(gè)向量是( 。
A.(1,2)B.(2,1)C.(1,-2)D.(-2,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案