已知橢圓C:的左、右兩焦點分別為F1,F(xiàn)2,P是橢圓C上的一點,且在x軸的上方,H是PF1上一點,若,(其中O為坐標(biāo)原點),
(Ⅰ)求橢圓C離心率e的最大值;
(Ⅱ)如果離心率e取(Ⅰ)中求得的最大值,已知b2=2,點M(-1,0),設(shè)Q是橢圓C上的一點,過Q,M兩點的直線l交y軸于點N,若,求直線l的方程。
解:(Ⅰ)由題意知,,則有相似,
所以,,
設(shè)
則有,解得,
所以,,
根據(jù)橢圓的定義,得
,即
所以,
顯然上是單調(diào)減函數(shù),
當(dāng)時,e2取得最大值
所以,橢圓C離心率e的最大值為
(Ⅱ)由(Ⅰ)知,解得:a2=4,
所以此時橢圓C的方程為,
由題意知直線l的斜率存在,故設(shè)其斜率為k,
則其方程為
設(shè),由于,
所以有
,
又Q是橢圓C上一點,則,
解得:k=±4,
所以直線l的方程為4x-y+4=0或4x+y+4=0。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如圖,已知橢圓C:的左、右焦點分別為F1、F2,離心率為
3
2
,點A是橢圓上任一點,△AF1F2的周長為4+2
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記
MQ
QN
,若在線段MN上取一點R,使得
MR
=-λ
RN
,則當(dāng)直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省嘉興市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,O為原點.
(I)如圖①,點M為橢圓C上的一點,N是MF1的中點,且NF2丄MF1,求點M到y(tǒng)軸的距離;
(II)如圖②,直線l::y=k+m與橢圓C上相交于P,G兩點,若在橢圓C上存在點R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三下學(xué)期第二次聯(lián)考文數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2為正三角形,且以線段F1F2為直徑的圓與直線相切.

(Ⅰ)求橢圓C的方程和離心率e;

(Ⅱ)若點P為焦點F1關(guān)于直線的對稱點,動點M滿足. 問是否存在一個定點T,使得動點M到定點T的距離為定值?若存在,求出定點T的坐標(biāo)及此定值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沂高三5月高考模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓C: 的左、右焦點分別為,離心率為,點A是橢圓上任一點,的周長為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點任作一動直線l交橢圓C于兩點,記,若在線段上取一點R,使得,則當(dāng)直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

 

(本小題滿分12分)已知橢圓C:的左、右頂點的坐標(biāo)分別為,,離心率

(Ⅰ)求橢圓C的方程:

(Ⅱ)設(shè)橢圓的兩焦點分別為,,若直線與橢圓交于兩點,證明直線與直線的交點在直線上。

 

查看答案和解析>>

同步練習(xí)冊答案