7.設(shè)命題p:?x∈R,ex≥x+1,則¬p為( 。
A.?x∈R,ex<x+1B.?x0∈R,ex0<x0+1C.?x0∈R,ex0≤x0+1D.?x∈R,ex0≥x0+1

分析 利用全稱命題的否定是特稱命題,寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,所以命題p:?x∈R,ex≥x+1,則¬p為?x0∈R,ex0<x0+1,
故選:B

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)(2x-1)4=a0+a1x+a2x2+a3x3+a4x4
(1)求a2的值
(2)求(a0+a2+a42-(a1+a32的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中正確命題的個數(shù)是( 。
(1)對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1>0;
(2)命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
(3)回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為$\widehat{y}$=1.23x+0.08;
(4)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件.
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)是定義在R上的函數(shù),它的圖象關(guān)于點(1,0)對稱,當(dāng)x≤1時,f(x)=2xe-x(e為自然對數(shù)的底數(shù)),則f(2+3ln2)的值為( 。
A.48ln2B.40ln2C.32ln2D.24ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標系xOy中,直線l的參數(shù)方程$\left\{\begin{array}{l}{x=1+t}\\{y=-t}\end{array}\right.$(t為參數(shù)) 以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程ρ+2rcosθ=0(r>0).
(I )求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)當(dāng)r為何值時,曲線C 上有且只有3個點到直線l的距離為1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-2≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$則目標函數(shù)z=$\frac{2y}{x+2}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{3}$,則向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$與向量$\overrightarrow{e_1}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線W:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)一個焦點為F(2,0),若點F到W的漸近線的距離是1,則W的離心率為( 。
A.$\frac{4}{3}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個封閉的正三棱柱容器,高為8,內(nèi)裝水若干(如圖甲,底面處于水平狀態(tài)).將容器放倒(如圖乙,一個側(cè)面處于水平狀態(tài)),這時水面所在的平面與各棱交點E,F(xiàn),F(xiàn)1,E1分別為所在棱的中點,則圖甲中水面的高度為6.

查看答案和解析>>

同步練習(xí)冊答案