【題目】已知橢圓的方程為,其離心率,且短軸的個(gè)端點(diǎn)與兩焦點(diǎn)組成的三角形面積為,過(guò)橢圓上的點(diǎn)作軸的垂線,垂足為,點(diǎn)滿足,設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相切,且交橢圓于兩點(diǎn), ,記的面積為, 的面積為,求的最大值 .
【答案】(1) (2)
【解析】
(1)根據(jù)題意可得橢圓的方程為,設(shè),
由,得,根據(jù)代入法可得曲線的方程為.(2)由題知直線的斜率存在,設(shè)直線的方程為,由與圓相切可得.將與聯(lián)立可得二次方程,然后由根與系數(shù)的關(guān)系及弦長(zhǎng)公式可得,從而得到,,求得后再根據(jù)基本不等式求解即可得到所求.
(1)依題意可得 ,
由,
解得,橢圓方程為.
設(shè),
由,得,
代人橢圓方程得曲線的方程為.
(2)由題知直線的斜率存在,設(shè)直線的方程為,
由與圓相切可得,即.
由消整理得
又直線與橢圓交于兩點(diǎn),
所以,故得.
設(shè),
則,,
.
則,.
,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
所以的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,有,且當(dāng)時(shí),,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).
(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;
(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),
則的最小值為.
應(yīng)用上述解法,求解下列問(wèn)題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(0,-2),橢圓E: 的離心率為,F是橢圓E的右焦點(diǎn),直線PF的斜率為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)直線l被圓O:x2+y2=3截得的弦長(zhǎng)為3,且與橢圓E交于A、B兩點(diǎn),求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣畜牧技術(shù)員張三和李四9年來(lái)一直對(duì)該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場(chǎng)年養(yǎng)殖數(shù)量y(單位:萬(wàn)只)與相成年份x(序號(hào))的數(shù)據(jù)表和散點(diǎn)圖(如圖所示),根據(jù)散點(diǎn)圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場(chǎng)的個(gè)數(shù)z(單位:個(gè))關(guān)于x的回歸方程.
(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計(jì)量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計(jì)量:);
(2)試估計(jì):①該縣第一年養(yǎng)殖山羊多少萬(wàn)只?
②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下藥物效果與動(dòng)物試驗(yàn)列聯(lián)表:
患病 | 未患病 | 總計(jì) | |
服用藥 | 10 | 45 | 55 |
沒服用藥 | 20 | 30 | 50 |
總計(jì) | 30 | 75 | 105 |
經(jīng)過(guò)計(jì)算,,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是
臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A. 有97.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
B. 有99%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
C. 有99.5%的把握認(rèn)為服藥情況與是否患病之間有關(guān)系
D. 沒有理由認(rèn)為服藥情況與是否患病之間有關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次人才招聘會(huì)上,假定某畢業(yè)生贏得甲公司面試機(jī)會(huì)的概率為,贏得乙、丙兩公司面試機(jī)會(huì)的概率均為,且三家公司是否讓其面試是相互獨(dú)立的,則該畢業(yè)生只贏得甲、乙兩家公司面試機(jī)會(huì)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>D,若函數(shù)滿足條件:存在,使在上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”,若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com