【題目】已知函數(shù)f(x)在(-1,1)上有定義,當且僅當0<x<1時f(x)<0,且對任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明

(1)f(x)為奇函數(shù);(2)f(x)在(-1,1)上單調(diào)遞減

【答案】(1)見解析; (2)見解析.

【解析】

(1)令x=y=0可得f(0)=0,令y=-x,可得f(-x)=-f(x),故得證;(2)由單調(diào)性的定義,任取x1,x2∈(-1,1),且x1<x2,由性質可得可得f(x2)-f(x1)=f(x2)+f(-x1)=f(,由已知可判f()<0,進而得證.

證明:(1)由f(x)+f(y)=f()可令x=y=0,得f(0)=0,

令y=-x,得f(x)+f(-x)=f()=f(0)=0 ∴f(x)=-f(-x) ∴f(x)為奇函數(shù)

(2)先證f(x)在(0,1)上單調(diào)遞減

令0<x1<x2<1,則f(x2)-f(x1)=f(x2)+f(-x1)=f()

∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴>0,

又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0,∴x2-x1<1-x2x1,

∴0<<1,由題意知f()<0, 即 f(x2)<f(x1)

∴f(x)在(0,1)上為減函數(shù),又f(x)為奇函數(shù)且f(0)=0

∴f(x)在(-1,1)上為減函數(shù)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,的線性回歸直線方程為,且之間的一組相關數(shù)據(jù)如下表所示,則下列說法錯誤的為

A.變量,之間呈現(xiàn)正相關關系B.可以預測,當時,

C.D.由表格數(shù)據(jù)可知,該回歸直線必過點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)(a>0,a≠1)的反函數(shù)為,函數(shù)y=g(x)的圖像與的圖像關于點(a,0)對稱

(1)求函數(shù)y=g(x)的解析式。

(2)是否存在實數(shù)a,使得當恒有成立?若存在,求出a的取值范圍若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。DE、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得DE、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如城鎮(zhèn)小汽車的普及率為75%,即平均每100個家庭有75個家庭擁有小汽車,若從如城鎮(zhèn)中任意選出5個家庭,則下列結論成立的是( )

A.5個家庭均有小汽車的概率為

B.5個家庭中,恰有三個家庭擁有小汽車的概率為

C.5個家庭平均有3.75個家庭擁有小汽車

D.5個家庭中,四個家庭以上(含四個家庭)擁有小汽車的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某課題小組共10人,已知該小組外出參加交流活動次數(shù)為12,3的人數(shù)分別為3,3 4,現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.

1)記“選出2人外出參加交流活動次數(shù)之和為4”為事件A,求事件A發(fā)生的概率;

2)設X為選出2人參加交流活動次數(shù)之差的絕對值,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要測量底部不能到達的電視塔AB的高度,C點測得塔頂A的仰角是45°,D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,平面平面,點為棱的中點.

(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;

(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.

查看答案和解析>>

同步練習冊答案