【題目】下列命題中是真命題的是
A. 命題“若,則”的否命題是“若,則”
B. 若為假命題,則p,q均為假命題
C. 命題p:,,則:,
D. “”是“函數(shù)為偶函數(shù)”的充要條件
【答案】C
【解析】
A中,根據(jù)命題“若p,則q”的否命題是“若,則”,判斷即可;B中,根據(jù)為假命題時(shí),p、q至少有一個(gè)為假命題,判斷即可;C中,根據(jù)特稱命題的否定為全稱命題,判斷即可;D中,判斷充分性和必要性是否成立即可.
對(duì)于A,命題“若,則”的否命題是“若,則”,A錯(cuò)誤;
對(duì)于B,若為假命題,則p,q至少有一個(gè)為假命題,B錯(cuò)誤;
對(duì)于C,命題p:,,則:,,C正確;
對(duì)于D,時(shí),函數(shù)為偶函數(shù),充分性成立,
函數(shù)為偶函數(shù)時(shí),,必要性不成立,不是充要條件,D錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)分別在、處取得極小值、極大值.平面上點(diǎn)、的坐標(biāo)分別為、,該平面上動(dòng)點(diǎn)滿足,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).
(Ⅰ)求點(diǎn)、的坐標(biāo);
(Ⅱ)求動(dòng)點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的下頂點(diǎn)為,右焦點(diǎn)為,離心率為.已知點(diǎn)是橢圓上一點(diǎn),當(dāng)直線經(jīng)過點(diǎn)時(shí),原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與圓:相交于點(diǎn)(異于點(diǎn)),設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線與橢圓相交于點(diǎn)(異于點(diǎn)).①若,求的面積;②設(shè)直線的斜率為,直線的斜率為,求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過點(diǎn),斜率為1的直線與拋物線交于點(diǎn),,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于不同于的兩點(diǎn)、,若直線,分別交直線于兩點(diǎn),求取最小值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長(zhǎng)為,其中為底面的中心,,分別為,的中點(diǎn),平面與底面交于直線.
(1)求證:.
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為橢圓的左頂點(diǎn),過的直線交拋物線于、兩點(diǎn),是的中點(diǎn).
(1)求證:點(diǎn)的橫坐標(biāo)是定值,并求出該定值;
(2)若直線過點(diǎn),且傾斜角和直線的傾斜角互補(bǔ),交橢圓于、兩點(diǎn),求的值,使得的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓:有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構(gòu)成如下圖所示,則關(guān)于這三家企業(yè)下列說法錯(cuò)誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費(fèi)用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com