(2012•東城區(qū)模擬)若集合A={x|x2-4x-5<0,x∈Z},B={x|y=log0.5x>-3,x∈Z},記x0為拋擲一枚骰子出現(xiàn)的點數(shù),則x0∈A∩B的概率等于
2
3
2
3
分析:由題意知本題是一個古典概率,根據(jù)題目中所給的不等式解出解集,再求它們的交集,最后利用概率公式計算即得要求的概率.
解答:解:由x2-4x-5<0,x∈Z,
解得:-1<x<5,x∈Z,
∴x=0,1,2,3,4.即A={0,1,2,3,4},
B={x|y=log0.5x>-3,x∈Z}={1,2,3,4,5,6,7},
∴A∩B={1,2,3,4},
而x0為拋擲一枚骰子出現(xiàn)的點數(shù)可能有6種,
∴P=
4
6
=
2
3
,
故答案為:
2
3
點評:本題主要考查了古典概率,以及一元二次不等式的解法,概率題目的考查中,概率只是一個載體,其他內(nèi)容占的比重較大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)一模)已知sin(45°-α)=
2
10
,且0°<α<90°,則cosα=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿足:An=
F(n,2)
F(2,n)
(n∈N+),若對任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)在R上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)一模)已知x,y,z∈R,若-1,x,y,z,-3成等比數(shù)列,則xyz的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•東城區(qū)二模)已知函數(shù)f(x)=x
1
2
,給出下列命題:
①若x>1,則f(x)>1;
②若0<x1<x2,則f(x2)-f(x1)>x2-x1;
③若0<x1<x2,則x2f(x1)<x1f(x2);
④若0<x1<x2,則
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正確命題的序號是
①④
①④

查看答案和解析>>

同步練習(xí)冊答案